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1. Appendix

1.1. Derivation of the Implicit Gradient

In this subsection, we present the derivation of the im-
plicit gradient. Drawing upon the Cauchy Implicit Func-
tion Theorem [13], if there exists a point (θ0,Ω0) where
∇θL (θ,Ω) = 0, and the regularity conditions are satis-
fied, then within the neighborhood of (θ0,Ω0), there ex-
ists an implicit function θ∗ (Ω) such that the condition
∇θL (θ,Ω) = 0|Ω,θ∗(Ω). Assuming that ∇2

θL (θ∗,Ω) is
positive definite, we have the following derivation,

∇θL (θ∗ (Ω) ,Ω) = 0, (1)

∇2
θL (θ∗,Ω)∇Ωθ

∗ +∇Ω∇θ∗L (θ∗,Ω) = 0, (2)

∇Ωθ
∗ = −

(
∇2

θL (θ∗,Ω)
)−1 ∇Ω∇θL (θ∗,Ω) . (3)

Starting from Eq. (1) to Eq. (2), we perform the deriva-
tion to Ω on both sides of the Eq. (1). Under the assump-
tion that ∇2

θL (θ∗,Ω) is the positive define, it possesses
an inverse, allowing us to solve for the desired derivative
uniquely. By leveraging this inverse

(
∇2

θL (θ∗,Ω)
)−1

, we
can subsequently derive the implicit gradient in Eq. (3),

1.2. H-truncated Neumann Series Approximation

Directly computing the inverse of the Hessian matrix in the
implicit gradient for deep neural models is often computa-
tionally intractable due to its immense size and complexity.
To address this, we employ the H-truncated Neumann series
[2] to approximate this inverse as shown in (4),

(
∇2

θL
)−1

=

∞∑
j=0

(
I −∇2

θL
)j ≈ H∑

j=0

(
I −∇2

θL
)j

, (4)

where I is the identity matrix.
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1.3. Complexity Analysis
JSCPT introduces additional learnable parameters equal to
twice the number of tasks, this increase is deemed accept-
able. During the upper-level optimization, we only up-
date Ω, and θ is fixed via detach() operation. The time
of MTL using a combined loss with fixed weights as O(1)
and the main difference between different methods comes
from the gradient backward process. Given N tasks, the
truncated Neumann series number as H , assuming the
model conducts M times lower-level optimization and 1
upper-optimization. The cost of lower-level optimization
is O(M(N)) and the cost of upper-level optimization is
O(H +N +2). Therefore, the time complexity for the gra-
dient backward of JSCPT is O((M(N)+H+N+2)/M) =
O(N+(H+N)/M). Note that most gradient-based multi-
task optimization methods [3, 11, 21], require calculating
the gradient of each task and performing parameter back-
propagation, with a time complexity of O(N). Compared
with them, our approach does not significantly increase the
time complexity under a limited number of tasks.

1.4. Experimental setup
Dataset. We conduct experiments on three multi-task
datasets, including Office-Home [18], MiniDomainNet
[22], and a large-scale multi-task learning benchmark with
10 visual datasets.
• Office-Home comprises four distinct tasks: Art, Clipart,

Product, and Real World, each has 65 object categories in
diverse domains, about 15,500 images in total.

• MiniDomainNet is an extremely challenging multi-task
dataset, including 140,000 images distributed among 126
categories. It contains four tasks: Clipart, Painting,
Sketch, and Real.

• Large-Scale MTL Benchmark consists of 10 vision
tasks, including fine-grained recognition (OxfordPets
[15], StanfordCars [10], OxforsFlowers [14], Food101
[1], and FGVCAircraft [12]), texture recognition (DTD
[4]), scene recognition (SUN397 [19]), general recogni-
tion (Caltech101 [5]), action recognition (UCF101 [17]),
and satellite image recognition (EuroSAT [7]).
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Figure 1. Comparison with accuracy(%) of various methods on
the OxfordFlowers, EuroSAT, FGVCAircraft, DTD, Caltech101,
and UCF101 datasets, under the few-shot setting.

Baselines. We compare JSCPT with 7 tuning baselines:
(1) Zero-Shot uses hand-crafted text prompt (“a photo of
[CLASS]”) templates for zero-shot prediction; (2) CoOp
[23] trains text prompt on an individual task; (3) VPT [8]
learns a small number of trainable parameters in the vi-
sual space; (4) MaPLe [9] trains the coupled vision and
language prompts; (5) CLIP-Adapter [6] learns feature
adapters on either visual or language branch; (6) MVLPT
[16] trains task-shared multi-modal prompts;(7) MmAP
[20] learns the group-shared and task-specific prompts
aligned with text and visual modalities. Except for MVLPT
and MmAP, the other methods are mainly for single tasks.
We build a multi-task version for the single-task method by
training task-shared prompts or adapters.

1.5. Few-shot Results of Six Datasets

Fig. 1 shows the main results of different methods on
six datasets (i.e., OxfordFlowers, EuroSAT, FGVCAircraft,
DTD, Caltech101, and UCF101), under few-shot settings.
We can see from Fig. 1 that JSCPT outperforms other
methods on the six datasets under few-shot settings. This
indicates that JSCPT can enhance the generalization of
the multi-task vision-language prompt tuning with limited
data.
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