
K-Sort Arena: Efficient and Reliable Benchmarking for Generative Models via
K-wise Human Preferences

Supplementary Material

A. Derivation of Bayesian Updating
In this section, we provide a more detailed derivation of the
formulas in Section 3.1 to further clarify the theoretical un-
derpinnings.

A.1. Derivation of Eq. 6 in Paper

P (θ1|D) =

∫ ∞

−∞
P (θ1, θ2|D) dθ2

∝
∫ ∞

−∞
ϕ

(
θ1 − µ1

σ1

)
ϕ

(
θ2 − µ2

σ2

)
Φ

(
θ1 − θ2√
β2
1 + β2

2

)
dθ2

∝ ϕ

(
θ1 − µ1

σ1

)∫ ∞

−∞
ϕ

(
θ2 − µ2

σ2

)
Φ

(
θ1 − θ2√
β2
1 + β2

2

)
dθ2

(15)
Now let’s focus on the integral part. We first write Φ(x)

as an integral of ϕ(x), as follows:

Φ

(
θ1 − θ2√
β2
1 + β2

2

)
dθ2

=

∫ θ1

−∞

1√
2π(β2

1 + β2
2)

e
− (y−θ2)2

2(β2
1+β2

2) dydθ2

(16)

For simplicity, let β2 = β2
1 + β2

2 , and the integral part is
as follows:∫ ∞

−∞
ϕ

(
θ2 − µ2

σ2

)∫ θ1

−∞

1√
2πβ2

e
− (y−θ2)2

2β2 dydθ2

=

∫ θ1

−∞

(∫ ∞

−∞
ϕ

(
θ2 − µ2

σ2

)
1√
2πβ2

e
− (y−θ2)2

2β2 dθ2

)
dy

=

∫ θ1

−∞

(
ϕ

(
θ2 − µ2

σ2

)
∗ ϕ
(
y − θ2

β

))
dy

=

∫ θ1

−∞

(
ϕ

(
y − µ2√
σ2 + β2

))
dy

=Φ

(
θ1 − µ2√

β2
1 + β2

2 + σ2
2

)
(17)

Where “∗” denotes the convolution of two Gaussian func-
tions. Finally, Bringing the above result into Eq. 15, we
have:

P (θ1|D) =

∫ ∞

−∞
P (θ1, θ2|D) dθ2

∝ ϕ

(
θ1 − µ1

σ1

)
Φ

(
θ1 − µ2√

β2
1 + β2

2 + σ2
2

) (18)

A.2. Derivation of Eq. 7 in Paper

µ̂1 = E [θ1|D] =

∫∞
−∞ θ1P (θ1|D)dθ1∫∞
−∞ P (θ1|D)dθ1

=

∫∞
−∞ θ1ϕ

(
θ1−µ1

σ1

)
Φ

(
θ1−µ2√

β2
1+β2

2+σ2
2

)
dθ1∫∞

−∞ ϕ
(

θ1−µ1

σ1

)
Φ

(
θ1−µ2√

β2
1+β2

2+σ2
2

)
dθ1

(19)

We begin with the derivation of the numerator of Eq. 19.
Again, we write Φ(x) as an integral of ϕ(x), as follows:

Φ

(
θ1 − µ2√

β2
1 + β2

2 + σ2
2

)

=

∫ θ1

−∞

1√
2π(β2

1 + β2
2 + σ2

2)
e
− (y−µ2)2

2(β2
1+β2

2+σ2
2) dy

(20)

The computation of the integrals is analogous to the pro-
cedure described in Eq. 17, which requires reordering the
integrals and performing the necessary convolutions. Here,
we omit the repetitive steps and directly show the final re-
sult as follows:

Φ

(
µ1 − µ2√
β2 + σ2

)µ1 +
σ2
1√

β2 + σ2

ϕ

(
µ1−µ2√
β2+σ2

)
Φ

(
µ1−µ2√
β2+σ2

)

(21)

where σ2 = σ2
1 + σ2

2 and β2 = β2
1 + β2

2 . Similarly, the
derivation result for the denominator of Eq. 19 is as follows:

Φ

(
µ1 − µ2√
β2 + σ2

)
(22)

Thus, bringing the numerator and denominator results
into Eq. 19, we have the following:

µ̂1 = E [θ1|D]

=

∫∞
−∞ θ1P (θ1|D)dθ1∫∞
−∞ P (θ1|D)dθ1

= µ1 +
σ2
1√∑

(β2
i + σ2

i )

ϕ

(
µ1−µ2√∑
(β2

i +σ2
i )

)

Φ

(
µ1−µ2√∑
(β2

i +σ2
i )

)
(23)



B. Proof of theoretical advantages of UCB
The cumulative regret of the UCB policy grows logarithmi-
cally with the number of comparisons n, Rn = O(log n),
providing better long-term performance compared to the
linear growth of cumulative regret, Rn = O(n), of the ran-
dom selection policy.
Proof: For all K>1, if policy UCB is run on K machines
having arbitrary reward distributions P1 · · ·Pk with support
in [0,1], then its expected regret after n plays is bounded by:

RUCB
n ≤

8 ∑
i:µi<µ∗

(
lnn

∆i

)+

(
1 +

π2

3

) K∑
j=1

∆j


(24)

where µ1 · · ·µk are the expected values of P1 · · ·Pk, µ∗ is
the maximum expected value, and ∆i = µ∗−µi for subop-
timal selections. Please refer to [1] for a detailed derivation
of the above equation.

When adopting random selection, i.e., choosing an arm
uniformly at random at each play, the expected regret after
n plays is:

RRand
n = n ·

(
µ∗ − 1

K

K∑
i=1

µi

)
(25)

In the RUCB
n bound in Eq. 24, the first component is a

logarithmic term, and the second component is a constant
term and independent of n, thus RUCB

n has a logarithmic
growth O(log n). In Eq. 25, RRand

n has a linear growth
O(n). This indicates that UCB can makes better selections
over time, thus achieving a significantly lower cumulative
regret compared to random selection.

In our K-Sort Arena system, the lower regret of the
applied UCB policy indicates that it makes higher-reward
player groupings. This yields more ranking benefits in a sin-
gle comparison, thus allowing the system to converge more
quickly with fewer comparisons.

C. List of Evaluated Models
The lists of text-to-image and text-to-video models covered
by K-Sort Arena are shown in Table 2 and Table 3, respec-
tively. The data is in no particular order. We will continue
to add new models. In the future, besides distilled mod-
els [38, 46], we also plan to include the evaluation of mod-
els that are compressed through quantization [27–30, 34]
and pruning [8, 15].

D. Analysis of Votes
After several months of internal testing, we have collected
over 1,000 votes from experts in the field of visual gener-
ation. Note that in each vote, four models participate in a
free-for-all comparison, which is equivalent to K(K−1)

2 = 6

Table 2. List of text-to-image models in K-Sort Arena (in no par-
ticular order). Here, we show the name and license of each model.

Task Model License Organization

Text2Image

Dalle-3 Commercial OpenAI
Dalle-2 Commercial OpenAI

Midjourney-v6.0 Commercial Midjourney
Midjourney-v5.0 Commercial Midjourney

FLUX.1-pro Open source Black Forest Labs
FLUX.1-dev Open source Black Forest Labs

FLUX.1-schnell Open source Black Forest Labs
SD-v3.0 Open source Stability AI
SD-v2.1 Open source Stability AI
SD-v1.5 Open source Stability AI
SD-turbo Open source Stability AI

SDXL Open source Stability AI
SDXL-turbo Open source Stability AI

Stable-cascade Open source Stability AI
SDXL-Lightning Open source ByteDance
SDXL-Deepcache Open source NUS
Kandinsky-v2.2 Open source AI-Forever
Kandinsky-v2.0 Open source AI-Forever

Proteus-v0.2 Open source DataAutoGPT3
Playground-v2.5 Open source Playground AI
Playground-v2.0 Open source Playground AI
Dreamshaper-xl Open source Lykon
Openjourney-v4 Open source Prompthero

LCM-v1.5 Open source Tsinghua
Realvisxl-v3.0 Open source Realistic Vision
Realvisxl-v2.0 Open source Realistic Vision
Pixart-Sigma Open source PixArt-Alpha

SSD-1b Open source Segmind
Open-Dalle-v1.1 Open source DataAutoGPT3

Deepfloyd-IF Open source DeepFloyd

Table 3. List of text-to-video models in K-Sort Arena (in no par-
ticular order). Here, we show the name and license of each model.

Task Model License Organization

Text2Video

Sora Commercial OpenAI
Runway-Gen3 Commercial Runway
Runway-Gen2 Commercial Runway

Pika-v1.0 Commercial Pika
Pika-beta Commercial Pika
OpenSora Open source HPC-AI

VideoCrafter2 Open source Tencent
StableVideoDiffusion Open source Stability AI

Zeroscope-v2-xl Open source Cerspense
LaVie Open source Shanghai AI Lab

Animate-Diff Open source CUHK etc.

pairwise comparisons. This means our voting process can
be approximately converted to over 6,000 pairwise compar-
isons. Figure 9 illustrates the number of comparisons in
which each model is involved, with the data representing the
number of pairwise comparisons after conversion. Thanks
to the UCB algorithm and the pivot specification strategy,
all models are fully and balanced evaluated.



0 6 12 18 24
Model ID

0

150

300

450

Nu
m

be
r o

f c
om

pa
ris

on
s

Figure 9. The number of comparisons in which each model is
involved. Model IDs are aligned with the order in Table 2. The
data is as of Aug 2024.

Short prompt (~20 tokens)
Long prompt (~120 tokens)

Prompt 
Reading

Image Voting

Figure 10. Analysis of user voting times with different K values
(2, 4, 6) and prompt complexities.

E. Interface Layout

K-Sort Arena is served by Huggingface Space, and we
carefully design the interface based on gradio to achieve a
proper layout and user-friendly interaction. The interface
layout is shown in Figure 11. First, we describe the initial
interface before model running, which is divided into three
main regions.

• Region 1⃝ describes the background of the project and the
evaluation rules, and serves as a guide for users to vote.

• Region 2⃝ is the prompt input window, which allows
users to enter their own prompts or click “Random
Prompt” to randomly select from the data pool.

• Region 3⃝ is some completed samples, including the
prompt-image sample pairs, which allow users to quickly
complete an experience without running the model.

After finishing the model running, the interface automat-
ically jumps to the voting interface. It supports two voting
modes, and users can click “Mode” to switch between them.

• In Rank Mode, there are 4 buttons below each image to
indicate its rank. Whenever a user clicks on it, the image
is retouched with responsive borders and markup.

• In Best Mode, users can choose the best model or a tie.

F. User Behavior Analysis
We conduct a comprehensive analysis of user effort in a
visual voting task by collecting behavioral data from ten
trained participants, and the results are shown is Figure 10.
Our study examines effort expenditure across different val-
ues of K and varying levels of prompt complexity. Notably,
we observe that the additional effort required for K=4 com-
pared to K=2 remains within an acceptable range due to
the perceptual intuitiveness of the task. This suggests that
while increasing K introduces more choices, the cognitive
load does not escalate significantly, allowing users to make
selections with relative ease.

Furthermore, as prompt complexity increases, partic-
ularly with long prompts derived from the DiffusionDB
dataset, users naturally spend more time reading and pro-
cessing the information. This extended reading phase ef-
fectively diminishes the relative differences in effort when
engaging in visual voting, as the majority of cognitive load
is shifted towards comprehension rather than selection.



①

②

③

(a) Display of the initial interface.

(b) Display of the voting interface.

Figure 11. Interface of K-Sort Arena served by Huggingface Space.


	. Introduction
	. Related Work
	. Visual Generation Evaluation
	. Arena Evaluation with Human Preferences

	. Methodology
	. K-wise Comparison
	. Exploration-Exploitation Based Matchmaking

	. Experiments
	. K-Sort Arena vs. Elo-based Arena
	. Probabilistic vs. Numerical Modeling
	. K-wise vs. Pairwise Comparison
	. UCB vs. Traditional Matchmaking
	. Specified vs. Random Pivot

	. K-Sort Arena Platform
	. Covered Tasks and Models
	. Platform Construction
	. Leaderboard Building

	. Conclusion
	. Derivation of Bayesian Updating
	. Derivation of Eq. 6 in Paper
	. Derivation of Eq. 7 in Paper

	. Proof of theoretical advantages of UCB
	. List of Evaluated Models
	. Analysis of Votes
	. Interface Layout
	. User Behavior Analysis



