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Supplementary Material

A. Experimental Detials

A.1. Architecture

We employ two visual encoders: SigLIP and EgoVLPv2.
SigLIP represents the SigLIP-large-patch16-384 model,
pre-trained on the WebLi dataset at a resolution of 384×384.
EgoVLPv2 is the second generation of egocentric video-
language pre-training models, trained on the EgoClip ver-
sion of the Ego4D dataset at a resolution of 224×224. Due
to the inconsistency in token dimensions produced by these
visual encoders, each set of tokens is processed through an
MLP to align with the dimensionality of text tokens. The
Token Aggregation Router comprises an MLP and a Soft-
Max layer. At the frame level, it takes the [VG] token (i.e.,
the CLS token extracted by SigLIP) as input, assigning ag-
gregation weights to all tokens derived from both visual en-
coders for each frame. Additionally, the Token Dropping
Router employs an MLP and a SoftMax layer at the token
level, assigning confidence scores to individual visual to-
kens. Tokens with confidence scores below a pre-defined
discard threshold are deemed redundant and are subse-
quently dropped. For the large language model (LLM),
we leverage Llama-3-8B-Instruct [4], an optimized vari-
ant tailored for conversational tasks. Our online video di-
alogue template adheres to the instruction-tuning paradigm,
extending input to encompass a multimodal fusion of in-
terleaved visual and textual elements. In the Slow Path of
LION-FS, we adopt a Faster-RCNN object detection model
to detect hands and hand-interacting objects, instead of us-
ing a DETR-based model [1], to ensure real-time processing
of video frames.

A.2. Data Refinement

• Grammar Correction. For Ego-Exo4D, we reorganized
and refined the annotations of short-term atomic descrip-
tions by substituting third-person verb forms following
“C” with the second-person pronoun “You” and the base
verb form, e.g., modifying “C stands in a house” to “You
stand in a house.” Capital letters were preserved to de-
note other individuals (i.e., those not wearing the cam-
era), such as in “Lady X and man M prepare concrete in a
basin,” to clearly differentiate among entities. For the nar-
rations of Ego4D, we removed markers like “# C” (cam-
era wearer), “# O” (other individuals), and “# Unsure”
(uncertain narration) preceding each statement, maintain-
ing consistency with the annotation strategy applied to
Ego-Exo4D.

• Dialogue Data Augmentation. We employ modified

data augmentation strategies inspired by VideoLLM-
online and VideoLLM-MoD: 1) Replace a learning mes-
sage with incorrect content, then correct or leave it uncor-
rected to train the model’s ability to identify errors and
respond appropriately despite misinformation. 2) Intro-
duce temporal inconsistencies by inserting, deleting, or
replacing frames to simulate real-world frame sequence
variations. 3) Use empty strings, None, or remove mes-
sages to emulate scenarios involving missing or incom-
plete responses.

• Dual Visual Features Alignment. We employ two
encoders for visual feature extraction: SigLIP extracts
image tokens from frames sampled at 2 FPS, while
EgoVLPv2 processes frames sampled at 8 FPS by group-
ing them into sets of four and extracting video tokens
at 2 groups per second. To achieve temporal alignment
across different frame rates, we trim the final segment of
the video shorter than one second and remove any anno-
tations exceeding the new maximum duration.

A.3. Training Settings

All experiments are conducted using 8 × A800 80GB GPUs.
We train the full MLP, Token Aggregation Router, Token
Dropping Router, and LoRA [2] embedded in each linear
layer of the LLM. The batch size is set to 1 per GPU, with
training conducted for 10 epochs on the Ego-Exo4D dataset
and 2 epochs on the Ego4D dataset. Gradient accumulation
over 32 steps is used to achieve an effectively larger batch
size. We employ the AdamW [3] optimizer with an initial
learning rate of 0.0002, using cosine learning rate schedul-
ing with a 5% warmup ratio.

A.4. Evaluation Metrics

• Language Modeling Perplexity (LM-PPL) measures
the quality of a model’s probabilistic distribution in lan-
guage modeling. It provides an indirect evaluation by as-
sessing the probabilities assigned to each generated token.
A lower LM-PPL typically indicates a stronger language
modeling capability of the model.

• LM-Correctness assesses the precision of the model’s
language generation by focusing on the degree of align-
ment between generated text and reference text. By calcu-
lating the proportion of correctly generated tokens within
the language sequence, it reflects the model’s actual per-
formance in generative tasks.

• Time Difference (TimeDiff) evaluates the model’s real-
time processing and temporal alignment capabilities in



Figure 1. Visualization of Local Adaptive Augmentation in the Slow Path on Ego-Exo4D and Ego4D datasets. Green bounding boxes
highlight the user’s hands in the first-person view, while pink bounding boxes indicate the objects interacting with the hands. Experiments
demonstrate that the object interacting with the user’s hands is often the same, and retaining only a single interaction object’s bounding
box effectively reduces false detections.

handling video stream inputs. It is computed as the dif-
ference between the timestamp of the response occur-
rence and the expected timestamp. The average TimeDiff
across each dialogue turn is used as the metric.

• Fluency assesses the integration of visual information
and the naturalness and coherence of generated text. It
calculates the proportion of successfully predicted tokens
throughout the dialogue turns, including both response
determination and response generation predictions, pro-
viding a comprehensive evaluation of language and tem-
poral efficiency in video online dialogue.

B. Additional Experimental Analysis

B.1. Additional Efficiency Evaluation

The Fast Path of LION-FS incorporates two distinct vi-
sual encoders, enabling the aggregation of different visual
tokens (using the Token Aggregation Router) and drop-
ping redundant ones (using the Token Dropping Router),
thereby enhancing the efficiency of processing high frame-
rate videos. The Slow Path distinguishes keyframes (de-
termined as responsive frames) from ordinary frames (de-
termined as silent frames), and applies augmentation only
to keyframes, minimizing efficiency impact. As shown in
Table 1, VideoLLM-online and VideoLLM-MoD 1) merely
add tokens to every frame without optimizing specifically
for keyframes, and 2) as the input frame rate increases to
8 FPS, their inability to aggregate tokens leads to cumula-
tive token growth, resulting in a significant rise in FLOPs.
Additionally, when no frame augmentation is performed
across all methods, LION-FS achieves FLOPs comparable
to VideoLLM-MoD while supporting input at 8 FPS.

Table 1. FLOPs evaluation under the same test sample in Ego-
Exo4D. Since the code for VideoLLM-MoD has not been released,
VideoLLM-MoD* is reproduced based on its paper. Both LION-
FS and VideoLLM-Mod* adopt a strategy of dropping interleaved
layers with a dropping ratio of β = 0.5. Leveraging the two cus-
tomized routers and the keyframe augmentation strategy, LION-
FS significantly reduces FLOPs even at an input frame rate of
8 FPS. Without frame augmentation, LION-FS maintains nearly
constant FLOPs while supporting 8 FPS input.

Method Aug. Strategy Input FPS FLOPs

VideoLLM-online All frames 2 55.65T
VideoLLM-online None 8 59.49T
VideoLLM-MoD* All frames 2 47.00T
VideoLLM-MoD* None 8 50.29T

LION-FS Keyframes 8 21.53T

VideoLLM-online None 2 15.45T
VideoLLM-MoD* None 2 12.28T

LION-FS None 8 12.40T

B.2. Local Adaptive Augmentation for Box Tokens

The primary task of an online assistant in first-person scenes
is to engage in real-time dialogue with the user regarding
their current actions, focusing on the interaction between
the user and the environment. However, these interaction ar-
eas often constitute a small portion of the total frame in first-
person videos (especially from the Ego-Exo4D & Ego4D
datasets), leading to attention dispersion in MLLMs. We
address this by using bounding boxes, as shown in Figure 1,
to highlight the user’s hands and their interaction with the
environment, guiding the LLM to focus on these areas and
improving response precision. We first filter out the patch
tokens covered by the bounding boxes in each frame, and



then apply global pooling to the tokens within each bound-
ing box to obtain a single representation per box, termed
as the Box Token. We define up to three Box Tokens per
frame, corresponding to the user’s two hands and an inter-
acting object. When hands are absent or missed in detec-
tion, we replace them with a global pooling token of the
frame to maintain a consistent number of tokens. In fact,
when interaction regions are absent, focusing more on the
global scene is often necessary.

D. Limitations
The design of loss functions for online video dialogue mod-
eling is hindered by the negative impact of long-tailed dis-
tributions, as the frequency of [EOS] occurrences signif-
icantly exceeds that of [Assistant] when determining
response generation. Consequently, the model tends to fa-
vor predicting silence during training. To address this, we
propose transforming the binary decision task into a multi-
class prediction (using discrete special tokens to predict
varying response probabilities) or a response probability re-
gression task, thereby mitigating the effects of the long-
tailed distribution. Additionally, we aim to introduce a
fixed-length memory mechanism in LION-FS to replace the
Key-Value Cache, prioritizing recent context while retain-
ing essential historical information. This approach ensures
computational efficiency, thereby enabling the handling of
unlimited video lengths in online video dialogue.

E. Societal Impact and Potential Risk
LION-FS is fine-tuned on large language models (LLMs)
using the Ego-Exo4D and Ego4D datasets. Given the po-
tential for LLMs to generate hallucinations or biased re-
sponses, and the inherent unreliability of annotations in
these datasets, caution is advised when deploying LION-
FS as an online video assistant. Its responses should be
critically evaluated, and comprehensive safety and fairness
assessments are essential before practical deployment.
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