
LIRM: Large Inverse Rendering Model for Progressive Reconstruction of Shape,
Materials and View-dependent Radiance Fields

Supplementary Material

6. Overview
Our supplementary material consists of three parts.
• Implementation details, including multi-stage coarse-to-

fine training, accelerated deferred rendering and training
and testing datasets creation.

• Ablation studies on synthetic dataset, including impacts
of multi-stage coarse-to-fine training and input camera
trajectories, as well as qualitative and quantitative com-
parisons with baselines [89].

• A complementary collection of results on real data to the
main paper, including qualitative results from Stanford-
ORB [35] and analysis of LIRM’s limitations.

• LIRM reconstruction on 2 more challenging settings, in-
cluding using LIRM update model to reconstruct a chang-
ing scene and LIRM reconstruction using egocentric data.

All of the results in the supplementary materials use the
same implementation and datasets as the main paper.

In addition, we include a video for better visualization.

7. Implementation details
In this section, we summarize all implementation details to
ensure the reproducibility of our method. We are seeking
code release in the near future.

Coarse-to-fine training Our training consists of three
stages. We first train with large batch sizes but small res-
olutions for fast convergence, and later train with high res-
olutions but small batch sizes for better details. The hyper-
parameters for the three stages are summarized in Tab. 6.
Similar to [85], we utilize cropped regions from the original
ground-truth image for supervision. β is the standard devi-
ation that controls sharpness of the surface, as mentioned in
Eq. (9). We increase 1

β linearly following [73]. We also
tried to learn β using gradient descent; however, this ap-
proach resulted in less stable training.

Accelerated deferred rendering Deferred rendering
[99] is used in all prior volume-based LRM methods [28,
36, 85] to reduce GPU memory consumption. The basic
idea is to cache the gradients so that we can render an im-
age patch-by-patch while still computing a perceptual loss
like LPIPS on the whole image, which is essential for recon-
structing texture details. In our setting, we find that render-
ing the whole image crop in a single pass can reduce time
consumption for the first two stages of training, making de-
ferred rendering unnecessary. However, in the third training
stage, rendering the whole image crop becomes impractical

due to memory overflow, as we significantly increase the
number of samples per ray and compute numerical normals
for improved geometry reconstruction. We therefore adopt
the occupancy grid acceleration developed in Nerfacc [37]
in the third stage. Before we render the image crops, we
first compute an occupancy grid of resolution 250 and fil-
ter out voxels with α lower than 1e−4. The computation
of occupancy grid takes only 0.05 s, while significantly re-
ducing GPU memory consumption and accelerates training.
It allows us to filter out 91.2 percentage of sampled points
on average and reduce the time consumption to render four
image crops of size 192× 192 from around 4s to 0.3s.

Training datasets creation The camera settings used to
create synthetic datasets under uniform lighting are identi-
cal to those used under environmental lighting. For each 3D
model, we render 32 images for training. To ensure gen-
eralizability to various camera types, the field of view is
uniformly sampled between 15◦ and 85◦. The elevation an-
gle is uniformly sampled between [−5◦, 70◦] while azimuth
angle is uniformly sampled between [0◦, 360◦]. For data
augmentation, we employ an auto-exposure algorithm that
automatically adjusts the camera’s exposure settings. Dur-
ing training, we also on the fly apply a perturbation scale
to image pixels uniformly sampled between 0.75 and 1.25.
For the synthetic dataset under environmental lighting, we
generate two versions: one with the original roughness val-
ues from the 3D models, and another where the roughness
values are scaled by a factor between 0.3 and 0.6 to cre-
ate more specular appearances. The two datasets are mixed
together to train LIRM for inverse rendering.

Testing datasets creation We select input and output
views for the testing datasets in a manner that closely fol-
lows MeshLRM [85]. We set elevation angles as 0◦, 20◦,
40◦ and uniformly divide azimuth angle into 16 intervals,
which gives us 48 views in total. From these 48 views, we
uniformly sample 8 views at elevation 20◦ and 40◦ as the
input views. We then sample 12 views from the remaining
32 views as the output views. The FoV is set to be 50◦. The
camera always looks at the object center. Its distance to the
object center is set as the minimal distance that can cover
the object’s bounding sphere. esting datasets captured un-
der uniform lighting and environmental lighting conditions
follow the same camera settings and view selection method.



LRM Learning Batch Input Samples Input GT Crop. 1
β Epochs Update-VolSDF rate size num. per ray res. res. res.

Stage 1 4e−4→2e−5 768 [3, 6] 128 512 256 128 1e→2e2 30 2
Stage 2 2e−5→1e−6 320 [3, 6] 512 512 384 128 2e2→2.5e2 5 3
Stage 3 1e−6→0 256 [3, 6] 1024 512 512 192 2.5e2 2 3

Table 6. Training settings for LIRM. Our learning rate decreases following a cosine scheduling while 1
β

increases following a linear
scheduling.
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Figure 9. Qualitative comparisons of view synthesis results after
different stages of our coarse-to-fine training paradigm.

Table 7. Quantitative comparisons of different stages of training
for view synthesis under uniform lighting on GSO dataset

LIRM-hexa 4th PSNR (↑) SSIM (↑) LPIPS (↓) CD (↓)
Stage 1 27.56 0.924 0.113 0.120
Stage 2 30.80 0.950 0.060 0.118
Stage 3 30.56 0.948 0.054 0.115
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Figure 10. Two different camera trajectories to test LIRM’s update
model. Random sampling is the default camera trajectory used in
the main paper. θ and ϕ are elevation and azimuth angles.

8. Experiments on Synthetic Data

Impacts of coarse-to-fine training We test the network’s
reconstruction quality after different stages of training. We
run the experiments on the GSO dataset rendered with uni-
form lighting. The quantitative results are summarized in
Tab. 7. We report the view synthesis metrics and chamfer
distance after the 4th update. The second stage of training
significantly enhances texture details, while the second and
third stages exhibit similar texture quality. However, the
geometry quality in the third stage is better due to the incor-
poration of numerical normal loss. Fig. 9 visualizes view
synthesis results from different stages of training.

Table 8. Quantitative comparisons of different camera trajecto-
ries for view synthesis under uniform lighting on GSO dataset.
”Rd” and ”Sq” represent random sampling and sequential sam-
pling. The numbers of rows (1st to 4th) represent the number of
updates performed by our model.

PSNR (↑) SSIM (↑) LPIPS (↓)
Rd Sq Rd Sq Rd Sq

1st 29.27 27.70 0.941 0.933 0.061 0.081
2nd 30.48 30.09 0.947 0.946 0.056 0.060
3rd 30.65 30.66 0.949 0.949 0.054 0.055
4th 30.56 30.56 0.948 0.948 0.054 0.055
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Figure 11. Comparisons of reconstruction results under different
camera trajectories. LIRM is robust to the order of input images
and can converge to similar reconstruction results.

Impacts of inference camera trajectories For all the
synthetic data experiments in the main paper, all the input
views are fed to LIRM follow the same random order, which
is shown in Fig. 10 (2). We test the impact of camera tra-
jectory by feeding input images into LIRM sequentially, as
shown in Fig. 10 (1). Qualitative and quantitative results of
the new camera trajectory are summarized in Fig. 11 and
Tab. 8 respectively. We observe that the initial reconstruc-
tion results are worse when we follow the new sequential or-
der because those initial input images only observe one side
of objects. However, our reconstruction errors converge to
similar numbers after using all 16 images. It shows that
LIRM update module is very robust to camera trajectories.

Comparisons with a MeshLRM baseline Prior state-of-
the-art LRM-based mesh reconstruction method [85] has
not been open sourced yet. To compare with this strong
baseline, we trained an LRM-VolSDF model with the same
network architecture as [85] using our newly created syn-
thetic dataset built on Shutterstock [1]. Tab. 9 compares
the baseline model with LIRM on GSO dataset rendered
with uniform lighting. We observe that LIRM consistently
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Figure 12. More inverse rendering results from ABO [12] (first row) and DTC [2] (second row) datasets. Ground-truths material maps are
included in insets.

Table 9. Quantitative comparisons for view synthesis under uni-
form lighting on GSO dataset with different number of images.

4 images PSNR (↑) SSIM (↑) LPIPS (↓)
Baseline 28.72 0.940 0.070
LIRM-hexa 1st 29.27 0.941 0.061

8 images PSNR (↑) SSIM (↑) LPIPS (↓)
Baseline 30.19 0.947 0.061
LIRM-hexa 2nd 30.48 0.947 0.056

12 images PSNR (↑) SSIM (↑) LPIPS (↓)
Baseline 30.50 0.948 0.059
LIRM-hexa 3rd 30.65 0.949 0.054

Input image NvdiffrecMC Neural-PBIR LIRM Ground-truth

Figure 13. Qualitative comparisons of geometry reconstruction
quality. Meshes reconstructed by LIRM have much less artifacts
compared to optimization-based methods.

performs better compared to the baseline model with differ-
ent number of input images. Moreover, our update model
enables us to utilize more input images without increasing
GPU memory consumption, whereas the baseline model re-
quires sending all images to the transformer simultaneously.

Complementary qualitative inverse rendering results
In Fig. 12, we show more qualitative inverse rendering and
relighting results from DTC [2] and ABO [12] datasets. The
ground-truths materials are shown in the insets. For exam-
ples from both datasets, LIRM can accurately reconstruct
detailed geometry and spatially varying materials, such as
roughness and metallic maps. These high-quality inverse
rendering results enable us to create realistic rendering un-
der novel lighting conditions.

9. More Experiments on Real Data

Complementary qualitative results on Stanford-ORB
Fig. 14 includes more inverse rendering and relighting re-
sults from Stanford-ORB [35] dataset. We compared with
4 prior works as described in the main paper. MetaLRM
[70] is an concurrent LRM-based inverse rendering method
that takes sparse views as inputs and reconstructs geome-
try and material maps in a feed-forward manner. We ob-
tained the relighting results from authors of [70]. We can
see LIRM significantly improves both the geometry and ma-
terial reconstruction quality compared to the prior work. We
also compared LIRM with the three best optimization-based
methods on Stanford-ORB’s leaderboard. All three meth-
ods take dense views as inputs and need at least close to an
hour to finish optimization. In contrast, LIRM achieves re-
construction quality comparable to state-of-the-art methods
using only sparse inputs and requiring less than 1 second
for reconstruction. We observe that LIRM better recovers
specular highlights and exhibits more robust geometry re-
construction for glossy materials compared to optimization-
based methods. Fig. 13 shows geometry reconstruction re-
sults of LIRM and two leading optimization-based inverse
rendering methods. For shinny objects, LIRM can still gen-
erate smooth geometry while optimization-based methods
either lose geometry details or generate a lot of artifacts near
the highlight regions. This reveals that our LIRM model has
learned high-quality geometry prior from the large collec-
tion of 3D models.

Limitations of LIRM We observe two major limitations
of LIRM. First, even through our NDE module can model
specular highlights and view dependent effects, as shown in
Fig. 6, Fig. 5 and Tab. 5, it fails to model mirror reflection
as shown in Fig. 15 (a). We argue this is an extremely chal-
lenging problem as it requires the network to reconstruct
the full 3D scene from sparse observation of reflection of
an unknown object. In addition, compared to optimization-
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Figure 14. More inverse rendering and relighting results on Stanford-ORB dataset [35].
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Figure 15. Two limitations of LIRM. (a) LIRM-NDE cannot han-
dle high-frequency reflection of mirror surfaces. (b) Compared
to optimization-based method, LIRM still traces behind in recon-
structing texture details.

based methods, LIRM still fails to recover more detailed
texture. In Fig. 15 (b), LIRM can reconstruct writings for
the brand name printed on the box, but not ingredient list,
unlike an optimization-based method [73]. We attribute this
limitation to the network capacity, as our hexa-plane rep-
resentation should have a sufficiently high resolution. A
larger model may be required to achieve higher-quality re-
constructions.

Challenging scenarios We test our LIRM’s generaliza-
tion ability on two more challenging scenarios. The first
scenario is updating reconstruction of a changing scene,
where we first capture one set of images, then change the
scene configuration by adding a new object and capture the
second set of images. We use the two sets of images as
inputs to LIRM’s update model. The input images and re-
construction results are shown in Fig. 16. Despite that this
scenario never occurs in the training data, LIRM manages to
reconstruct the added object accurately while still preserv-

Input
images

Front-side 
reconstruction

Back-side 
reconstruction

1st set
of images

2nd set
of images

Figure 16. Reconstructing a changing scene with the LIRM update
model. Even if we change the scene configuration after capturing
the first set of input images, LIRM’s update model can still achieve
accurate reconstruct of the newly added object while preserving
old reconstruction.

ing the initial reconstruction of the first object. Note that the
front face of the ”teddy bear” is not shown in the second set
of input images and yet our model keeps all the facial details
unchanged through the updating process. This suggests that
our model may be applied to dynamic scene reconstruction
or large-scale scene reconstruction when one set of images
cannot cover the whole scene.

In the second scenario, we test our LIRM model on im-
ages casually captured by egocentric Aria glasses. Users
were asked to wear a pair of Aria glasses, walking towards
the object, causally look around the object and then walk
away. This egocentric capturing setting better mimics how
common people may take photos for 3D reconstruction.
However, it also presents unique challenges, such as large
field-of-view, motion blur, sensor noise, etc. We directly
test our LIRM model on the challenging egocentric cap-
tured images without any fine-tuning. Example inputs and
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Figure 17. LIRM reconstruction from images casually captured
using egocentric Aria glasses [19].

reconstruction results are shown in Fig. 17. For each video
sequence, we extract 16 images as inputs. Even though
there are clear domain gaps between testing inputs and our
training data, our LIRM still reconstructs the object appear-
ance that is very close to the ground-truth.
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