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Supplementary Material

A. Supplementary Materials
A.1. Proof by Formulas

The derivation proof from Eq. (8) to Eq. (9) is intuitive,
given as follows.

h(x) =eAx

∫ x

−∞
B(e−Ay)v(y)dy,

h
′
(x) =AeAx

∫ x

−∞
B(e−Ay)v(y)dy + eAxBe−Axv(x),

=AeAx

∫ x

−∞
B(e−Ay)v(y)dy +Bv(x),

=Ah(x) +Bv(x).
(15)

Below, we provide the derivation proof from Eq. (10) to Eq.
(12). It can be deduced from Eq. (8) that

F (x) = e−Axh(x) =

∫ x

−∞
B(e−Ay)v(y)dy

=F (0) +

∫ x

0

B(e−Ay)v(y)dy

=h(0) +

∫ x

0

B(e−Ay)v(y)dy.

(16)

Continuing the derivation, we can obtain

e−Axh(x) =h(0) +

∫ x

0

B(e−Ay)v(y)dy,

h(x) =eAxh(0) + eAx

∫ x

0

B(e−Ay)v(y)dy.

(17)

Assume xk and xk+1 are two adjacent sampling points after
discretization, we will show below how to go from h(xk) to
h(xk+1). Firstly, we provide their definitions below:

h(xk) = eAxkh(0) + eAxk

∫ xk

0

B(e−Ay)v(y)dy,

h(xk+1) = eAxk+1h(0) + eAxk+1

∫ xk+1

0

B(e−Ay)v(y)dy,

= eA(xk+(xk+1−xk))h(0)

+ eA(xk+(xk+1−xk))

∫ xk+1

0

B(e−Ay)v(y)dy,

= eA(xk+1−xk)[eAxkh(0) + eAxk

∫ xk

0

B(e−Ay)v(y)dy]

+ eAxk+1

∫ xk+1

xk

B(e−Ay)v(y)dy,

= eA(xk+1−xk)h(xk) +

∫ xk+1

xk

B(eA(xk+1−y))v(y)dy.

(18)

Assume ∆ = xk+1 − xk as the step length parameter for
the time interval, then

h(xk+1) = eA∆h(xk) +

∫ xk+1

xk

B(eA(xk+1−y))v(y)dy.

(19)
According to the concept of zero-order hold, when ∆ ap-
proaches 0, we can regard the value of function v in the
interval [xk, xk+1] as a constant v(xk+1), then Eq. (19) can
be written as:

h(xk+1) ≈eA∆h(xk) +

∫ xk+1

xk

eA(xk+1−y)dyBv(xk+1),

≈eA∆h(xk) +Bv(xk+1)e
Axk+1

∫ xk+1

xk

(e−Ay))dy,

≈eA∆h(xk) +Bv(xk+1)
1

A
(eA(xk+1−xk) − 1),

≈eA∆h(xk) + ∆Bv(xk+1)
1

∆A
(e∆A − 1).

(20)
Let Ā = e∆A, B̄ = (∆A)

−1
(e∆A − I) ·∆B, then:

h(xk+1) = Āh(xk) + B̄v(xk+1). (21)

Lastly, with Eq. (8) combined, we can obtain:

h(xk+1) =Āh(xk) + B̄v(xk+1),

K(v)(xk+1) =Ch(xk+1).
(22)

This is easy from Eq. (22) to Eq. (12).

A.2. Experimental Setup

IXI fastMRI

4 8

Random Radial Equispaced Random Radial Equispaced

Figure 6. Representative MRI images used in our experiments.
The first row showcases some IXI and fastMRI samples, while the
second row exhibits images at ×4 and ×8 acceleration levels as
well as three distinct mask types.

Datasets: For single-channel MRI evaluation, two MRI
datasets, IXI † and knee fastMRI[57] are adopted to evaluate

†https://brain-development.org/ixi-dataset/
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Figure 7. Visual results of multi-coil recovery with ×6 AR of random mask.
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Figure 8. Loss curves during different model training on IXI dataset with ×4 AR of radial mask.

the clinical efficacy of the proposed method. IXI comprises
of 578 registered T2 images, each with a size of 256× 256.
For fastMRI dataset, 588 volumes of fat-suppressed proton
density (FSPD) weighted images are selected, each with a
size of 320× 320. We split the dataset into training, valida-
tion, and testing sets with a ratio of 7 : 1 : 2. In addition,
we employ three different k-space undersampling masks,
i.e., 1D Cartesian with random fraction, 1D Cartesian with
equispaced fraction, and 2D radial, with acceleration rates
(ARs) of 4× and 8× in our experiments.

For multi-channel MRI evaluation, a brain dataset [1]
is employed, which includes fully sampled multi-coil im-
ages from five volunteers. Data from the first four par-
ticipants are used for training, while those from the fifth
participant are split into validation and test sets. Specif-
ically, the dimensions of training, validation, and testing
data are 12 × 360 × 256 × 232, 12 × 100 × 256 × 232,
and 12×64×256×232, respectively. Note that the dimen-
sions are sequentially denoted as coils, slices, width, and
height. Coil sensitivity maps are estimated using ESPIRiT
[45] from the central k-space region of each slice. Several
representative samples and masks used in the main texts are
showcased in Fig. 6.

Implementation details: All experiments are coded us-
ing the Pytorch framework on an NVIDIA GeForce RTX

3090 GPU. We employ Charbonnier loss and Adam opti-
mizer with parameters (β1 = 0.9, β2 = 0.999) for model
update. Besides, the initial learning rate, the batch size, and
the epochs are set as 10−4, 1, and 100, respectively.

Competing methods: Six previously reported state-of-
the-art methods are selected, comprising of three deep un-
folding methods including HQS-Net [53], H-DSLR [37],
and PGIUN [17], as well as three purely deep learning-
based methods including Unet [57], SwinIR [29] and U-
Mamba [40]. For all competitors, the parameter configura-
tions suggested by the original authors are employed for a
fair comparison.

A.3. More visual results on multi-coil recovery

Fig. 7 provides the most complete comparisons, with other
competing methods introduced. Evidently, the error maps
from the additionally added competitors all suffer from
much more scattered points and dramatic changes, demon-
strating the inferior recovery performance compared to H-
DSLR, PGIUN, and LMO.

A.4. The comparisons on running efficiency

In the main texts, we have claimed that our LMO enjoys
only O(n) time complexity. Here, we further provide the
decreasing loss curves, as illustrated in Fig. 8, showing



Metrics Unet SwinIR U-Mamba HQS-Net H-DSLR PGIUN LMO

GPU memory 1374M 12896M 2194M 2228M 4950M 9492M 4705M
Epochs 100 100 100 100 100 100 100

Training time 1.71h 25.23h 9.39h 6.16h 7.29h 8.06h 8.11h

Table 6. The comparisons on training efficiency, including memory, epochs, and ellapsed time (IXI-Radial-×4).

Dataset Batchsize Epochs Loss η γ ω Inputs

IXI 1 100 Charbonnier 0.0001 0.98 1e-06 Sampled Signal+Mask
fastMRI 1 100 Charbonnier 0.0001 0.98 1e-10 Sampled Signal+Mask

Multi-Coil Recovery 1 100 Charbonnier 0.0001 0.98 1e-06 Sampled Signal+Mask+Coil Sensitivity Maps

Table 7. Hyperparameter setting for model training. η, γ, and ω represent the learning rate, weight decay, and scheduler gamma, respec-
tively. ‘Loss’ is short for loss function during training stage.

the actual training process of all competing models. Our
first observation is that H-DSLR, PGIUN, and LMO share
a similar convergence level, not only presenting faster drop-
ping trends, but also enjoying fewer error fluctuations. With
a deeper inspection, we can further find that LMO achieves
lower errors than H-DSLR and PGIUN, confirming closely
to the numerical results shown in Table 1.

Additionally, some other efficiency metrics, including
GPU memory, used epochs, and training time, are also ab-
lated on the IXI dataset, as shown in Table 6. As seen, Unet
and SwinIR occupy the two extremes among all competing
methods. While the former enjoys the most efficient train-
ing stage, the latter suffers from the heaviest computational
burden. Our LMO ranks at the middle place in these re-
gards. Compared to U-Mamaba that also adopts the state
space model, our proposal is limited by more parameters
due to the combination of both global and local integrals.
However, in terms of training time, LMO is about one hour
ahead of U-Mamba. In contrast, compared to PGIUN that
performs the second best in most experiments, our proposed
model enjoys nearly half the parameters, but shares a simi-
lar level of training time. Note that all results are achieved
with hyperparameters set as in Table 7. Most of the values
are constant in different experiments, with partial of them
fine-tuned in specific cases. For other competing methods,
we use the optimal parameters mentioned in the original pa-
pers to ensure best practice.

A.5. Statistical analysis

Table 8 showcases the numerical results that have been al-
ready presented in Table 1, yet with the p-values added. It
can be seen that the differences in the experimental results
are statistically significant, indicating that these results are
not due to random fluctuations. However, such a table is too
redundant, so we have omitted the statistical comparison in
the main text of the paper. Note again that each experimen-

tal metric is obtained from 10 repeated runs.

A.6. More ablation experiments

Effect of different kernel integrals: The effects from dif-
fering amounts of our elaborated kernel integrals were scru-
tinized during the creation of LMO, with the results given
in Table 9. As evidenced, the more kernel integrals evi-
dently promote the higher model performance, yet resulting
in more parameters and computational burden. Among the
options of {4, 5, 6, 7}, the final selection of six kernel inte-
grals is considered with a better balance between efficiency
and efficacy, hence selected as the default value.

Moreover, to better demonstrate the data consistency of
our scanning plus convolution integration, we have com-
pared the performance of LMO with the classical neural
operators, including FNO [25] and CNO [39], for MRI re-
construction. The results are given in Table 10. For fair-
ness, the number of integration layers has been regulated to
ensure that all three models share the same level of param-
eters. It can be seen that FNO and CNO lag significantly
behind our LMO. This is because they are not specifically
designed for MRI tasks. Directly transferring these models
may overlook critical information in MRI signal reconstruc-
tion, resulting in a lack of data consistency.

Effect of the unfolding directions: In our Scan Un-
folding (SU) and Scan Merging (SM) module, we use four
different directional unfoldings for the function. To evalu-
ate the specific impact of different direction selections on
model performance, the ablation results are shown in Ta-
ble 11, in which the variable direction is used to represent
the number of unfolding directions in the experiments. Ev-
idently, it is observed that although with more parameters
and FLOPs required, the value of direction = 4 leads the
efficacy by a large margin, hence suggested as our default
selection.

Effect of the latent space dimension: To explore the



AR Methods

IXI fastMRI

Random Radial Equispaced Random Radial Equispaced

PSNR SSIM P-Value PSNR SSIM P-Value PSNR SSIM P-Value PSNR SSIM P-Value PSNR SSIM P-Value PSNR SSIM P-Value

×4

Unet 31.28 0.954 <0.001/<0.001 34.03 0.935 <0.001/<0.001 30.22 0.946 <0.001/<0.001 27.96 0.811 <0.001/<0.001 28.69 0.830 <0.001/<0.001 27.26 0.780 <0.001/<0.001
SwinIR 32.51 0.962 <0.001/<0.001 35.57 0.940 <0.001/<0.001 31.30 0.951 <0.001/<0.001 28.45 0.822 <0.001/<0.001 29.50 0.840 <0.001/<0.001 28.12 0.794 <0.001/<0.001

U-Mamba 32.10 0.958 <0.001/<0.001 34.03 0.930 <0.001/<0.001 30.92 0.945 <0.001/<0.001 28.17 0.813 <0.001/<0.001 28.93 0.833 <0.001/<0.001 27.57 0.782 <0.001/<0.001
HQS-Net 32.49 0.948 <0.001/<0.001 35.14 0.969 <0.001/<0.001 30.34 0.942 =0.001/<0.001 28.57 0.819 <0.001/<0.001 29.32 0.839 <0.001/<0.001 27.82 0.787 <0.001/<0.001
H-DSLR 36.01 0.982 <0.001/<0.001 45.31 0.994 <0.001/<0.001 33.65 0.968 <0.001/<0.001 29.04 0.834 <0.001/<0.001 30.23 0.866 <0.001/<0.001 28.25 0.799 <0.001/<0.001
PGIUN 37.98 0.985 <0.001/<0.001 47.09 0.994 <0.001/<0.001 35.51 0.978 <0.001/<0.001 30.02 0.850 <0.001/<0.001 30.98 0.876 <0.001/<0.001 28.55 0.809 <0.001/<0.001
LMO 39.14 0.986 - 48.16 0.996 - 35.70 0.980 - 30.17 0.853 - 31.11 0.883 - 28.65 0.832 -

×8

Unet 29.06 0.932 <0.001/<0.001 29.86 0.890 <0.001/<0.001 27.91 0.922 <0.001/<0.001 26.38 0.754 <0.001/<0.001 26.42 0.723 <0.001/<0.001 26.21 0.745 <0.001/<0.001
SwinIR 30.13 0.947 <0.001/<0.001 29.79 0.891 <0.001/<0.001 28.54 0.925 <0.001/<0.001 27.41 0.768 <0.001/<0.001 27.88 0.742 <0.001/<0.001 27.26 0.752 <0.001/<0.001

U-Mamba 29.88 0.935 <0.001/<0.001 29.31 0.879 <0.001/<0.001 28.06 0.923 <0.001/<0.001 26.89 0.758 <0.001/<0.001 27.75 0.765 <0.001/<0.001 26.89 0.748 <0.001/<0.001
HQS-Net 28.70 0.923 <0.001/<0.001 29.02 0.921 <0.001/<0.001 27.40 0.909 <0.001/<0.001 26.64 0.755 =0.001/<0.001 27.82 0.764 <0.001/<0.001 26.42 0.747 <0.001/<0.001
H-DSLR 31.96 0.955 =0.001/<0.001 34.50 0.971 <0.001/<0.001 29.80 0.938 <0.001/<0.001 27.04 0.762 <0.001/<0.001 27.28 0.741 <0.001/=0.001 26.84 0.752 <0.001/<0.001
PGIUN 34.15 0.970 <0.001/<0.001 36.21 0.980 <0.001/<0.001 31.74 0.957 <0.001/<0.001 27.83 0.783 <0.001/<0.001 28.01 0.791 <0.001/<0.001 27.41 0.768 <0.001/<0.001
LMO 34.26 0.971 - 36.53 0.983 - 31.80 0.960 - 27.88 0.808 - 28.29 0.837 - 27.51 0.787 -

Table 8. The numerical results under three masks as well as × 4 and × 8 ARs. P < 0.001 denotes a statistically significant level.

KIs PSNR SSIM Params FLOPs

7 48.40 0.997 2.07M 135.84G
6 48.16 0.996 1.78M 116.44G
5 47.52 0.995 1.48M 97.04G
4 46.57 0.993 1.18M 77.65G

Table 9. The results from different kernel integral (KI) numbers.
Our choices are marked in green (IXI-Radial-×4).

Methods PSNR SSIM Params FLOPs

FNO 27.37 0.723 1.77M 87.54G
CNO 27.96 0.773 1.78M 93.94G
LMO 48.16 0.996 1.78M 116.44G

Table 10. Numerical results of FNO, CNO, and LMO for MRI
reconstruction (IXI-Radial-×4).

SU&SM Directions PSNR SSIM Params FLOPs

direction = 1 37.48 0.934 1.43M 87.33G
direction = 2 43.56 0.981 1.55M 97.80G
direction = 4 48.16 0.996 1.78M 116.44G

Table 11. The results by using different directions in SU and SM.
Our choices are marked in green (IXI-Radial-×4).

Dimensions PSNR SSIM Params FLOPs

32 36.44 0.982 0.45M 29.23G
48 42.58 0.990 1.00M 65.59G
64 48.16 0.996 1.78M 116.44G
96 48.26 0.996 3.99M 261.64G

128 48.32 0.997 7.09M 464.81G

Table 12. The ablation results within different latent dimensions.
The final choice is colored green (IXI-Radial-×4).

practical efficacy of the dimension in which kernel integra-
tion is performed, we have provided the ablation results as
shown in Table 12. Note “Dimension” represents the value
that original function is lifted. Through kernel integration

learnt in this higher dimensional space, a concerned pro-
jection operation is then conducted to reconstruct the target
signal. The lifting and projection modules are composed of
convolution layers. As seen, a higher dimension enforces
the model learning more enriched features, further leading
to a higher performance. However, when the dimension
is beyond 64, the performance gain is limited. Taking ef-
ficiency into account, we finally choose 64 as the default
value.

A.7. The numerical results with difference degree

Due to space limitations, the changes in numerical incre-
ments corresponding to Tables 1 and 4 were originally not
provided in the main texts, which are now added in Tables
13, 14, and 15. It can be observed that our LMO method
wins the others in all cells. Furthermore, in generalization
experiments with regard to Table 15, LMO again achieves
the best results. When transferring the model trained at ×8
to other scales, LMO was the only one that shows an in-
crease in performance, while all others experienced a sharp
decline in performance to varying degrees.



AR Methods

IXI

Random Radial Equispaced

PSNR SSIM PSNR SSIM PSNR SSIM

×4

Unet 31.28▼20.1% 0.954▼3.2% 34.03▼29.3% 0.935▼6.1% 30.22▼15.3% 0.946▼3.5%
SwinIR 32.51▼16.9% 0.962▼2.4% 35.57▼26.1% 0.940▼5.6% 31.30▼12.3% 0.951▼3.0%

U-Mamba 32.10▼18.0% 0.958▼2.8% 34.03▼29.3% 0.930▼6.6% 30.92▼13.4% 0.945▼3.6%
HQS-Net 32.49▼17.0% 0.948▼3.9% 35.14▼27.0% 0.969▼2.7% 30.34▼15.0% 0.942▼3.9%
H-DSLR 36.01▼8.0% 0.982▼0.4% 45.31▼5.9% 0.994▼0.2% 33.65▼5.7% 0.968▼1.2%
PGIUN 37.98▼3.0% 0.985▼0.1% 47.09▼2.2% 0.994▼0.2% 35.51▼0.5% 0.978▼0.2%

LMO (Ours) 39.14 0.986 48.16 0.996 35.70 0.980

×8

Unet 29.06▼15.2% 0.932▼4.0% 29.86▼18.3% 0.890▼9.5% 27.91▼12.2% 0.922▼4.0%
SwinIR 30.13▼12.0% 0.947▼2.5% 29.79▼18.4% 0.891▼9.3% 28.54▼10.3% 0.925▼3.6%

U-Mamba 29.88▼12.8% 0.935▼3.7% 29.31▼19.8% 0.879▼10.6% 28.06▼11.8% 0.923▼3.9%
HQS-Net 28.70▼16.2% 0.923▼4.9% 29.02▼20.5% 0.921▼6.3% 27.40▼13.8% 0.909▼5.3%
H-DSLR 31.96▼6.7% 0.955▼1.6% 34.50▼5.5% 0.971▼1.2% 29.80▼6.3% 0.938▼2.3%
PGIUN 34.15▼0.3% 0.970▼0.1% 36.21▼0.9% 0.980▼0.3% 31.74▼0.2% 0.957▼0.3%

LMO (Ours) 34.26 0.971 36.53 0.983 31.80 0.960

Table 13. Numerical comparisons of IXI dataset under three masks as well as × 4 and × 8 ARs.

AR Methods

fastMRI

Random Radial Equispaced

PSNR SSIM PSNR SSIM PSNR SSIM

×4

Unet 27.96▼7.3% 0.811▼4.9% 28.69▼7.8% 0.830▼6.0% 27.26▼4.9% 0.780▼6.2%
SwinIR 28.45▼5.7% 0.822▼3.6% 29.50▼5.2% 0.840▼4.9% 28.12▼1.9% 0.794▼4.6%

U-Mamba 28.17▼6.6% 0.813▼4.7% 28.93▼7.0% 0.833▼5.7% 27.57▼3.8% 0.782▼6.0%
HQS-Net 28.57▼5.3% 0.819▼4.0% 29.32▼5.7% 0.839▼5.0% 27.82▼2.9% 0.787▼5.4%
H-DSLR 29.04▼3.8% 0.834▼2.2% 30.23▼2.8% 0.866▼1.9% 28.25▼1.4% 0.799▼4.0%
PGIUN 30.02▼0.5% 0.850▼0.4% 30.98▼0.4% 0.876▼0.8% 28.55▼0.4% 0.809▼2.8%

LMO (Ours) 30.17 0.853 31.11 0.883 28.65 0.832

×8

Unet 26.38▼5.4% 0.754▼6.7% 26.42▼6.6% 0.723▼13.6% 26.21▼4.7% 0.745▼5.3%
SwinIR 27.41▼1.7% 0.768▼5.0% 27.88▼1.4% 0.742▼11.4% 27.26▼0.9% 0.752▼4.4%

U-Mamba 26.89▼3.5% 0.758▼6.2% 27.75▼1.9% 0.765▼8.6% 26.89▼2.3% 0.748▼5.0%
HQS-Net 26.64▼4.4% 0.755▼6.6% 27.82▼1.7% 0.764▼8.7% 26.42▼4.0% 0.747▼5.1%
H-DSLR 27.04▼3.0% 0.762▼5.7% 27.28▼3.6% 0.741▼11.5% 26.84▼2.4% 0.752▼4.4%
PGIUN 27.83▼0.2% 0.783▼3.1% 28.01▼1.0% 0.791▼5.5% 27.41▼0.7% 0.768▼2.4%

LMO (Ours) 27.88 0.808 28.29 0.837 27.51 0.787

Table 14. Numerical comparisons of fastMRI dataset under three masks as well as × 4 and × 8 ARs.

SG
LMO PGIUN H-DSLR

PSNR SSIM PSNR SSIM PSNR SSIM

×4 to ×4 48.16 0.996 47.09 0.994 45.31 0.994
×4 to ×6 43.76▼9.1% 0.989▼0.7% 41.06▼12.8% 0.982▼1.3% 29.80▼34.2% 0.835▼16.0%
×4 to ×8 30.25▼37.2% 0.860▼13.7% 28.31▼39.9% 0.826▼17.0% 24.10▼46.8% 0.746▼24.9%

×8 to ×4 43.50▲18.8% 0.988▲0.5% 29.80▼17.7% 0.941▼4.0% 29.20▼14.4% 0.754▼22.1%
×8 to ×6 41.98▲14.6% 0.985▲0.2% 32.58▼10.0% 0.963▼1.7% 31.50▼7.7% 0.850▼12.2%
×8 to ×8 36.53 0.983 36.21 0.980 34.50 0.971

Table 15. The generalization comparisons across different scales. Bold and italic denote different performance trends.


