Learning Physics-Based Full-Body Human Reaching and Grasping
from Brief Walking References

Supplementary Material

1. Methods Details

1.1. Character and Degrees of Freedom

To assess the effectiveness of our approach to modeling a
character’s walking and manipulation behaviors, we use our
framework to train sophisticated 3D simulated characters to
perform a range of tasks. This involves using a character
based on AMP [11], where we have modified the spherical
hand structure into a more dexterous configuration, such as
the Shadow Hand [3]. The humanoid model consists of a
body with 15 joints featuring 28 degrees of freedom (DoF)
and a dexterous hand with 23 joints providing 25 DoF.

1.2. State and Observation

As our humanoid character is an adaptation of AMP [11]

and ShadowHand [3], the state is primarily derived from

AMP body states with modifications to the right hand us-

ing UniDexGrasp hand states [15]. This state comprises a

collection of features detailing the configuration of the char-

acter’s body and its dexterous hand. These features encom-

pass:

* Height of the root from the ground.

* Rotation of the root in local coordinates.

* Root’s velocity (linear and angular) in local coordinates.

¢ Local rotation of each joint.

* Local velocity of each joint.

* Local rotation of right hand joints.

* Local velocity of right hand joints.

* Local position of right hand joints.

* Right hand joint DoF.

* Velocity of right hand joint DoF.

 Positions of feet, left hand, and right fingertips in local
coordinates.

In low-level policy training, observations consist of body
states. For high-level downstream tasks, observations en-
compass full-body states along with task-specific data. For
instance, in a grasping task, observations may include the
object’s and table’s position and rotation, as well as the dis-
tance between the right fingertips and the target object.

1.3. Stage-based Task-specific Reward

As outlined in the primary document, the high-level pol-
icy is optimized using rewards tailored to specific tasks,
along with motion-prior rewards. In reaching and grasping
tasks, task-specific rewards r¢ are divided into four distinct
phases:

1. direction and walking, encouraging correct facing and

target velocity.

2. pre-grasping, focusing on moving the hand to approach
the grasp pose.

3. grasping, employing a reward mechanism similar to
UnidexGrasp[15] to promote effective grasping.

4. post-grasping, aiming at maintaining the grasped object,
with an additional reward for preserving body equilib-
rium.

In the first stage, the location reward is designed to guide
the agent toward the target by combining three components:
the position reward, the velocity reward, and the facing re-
ward. The combined reward is formulated as:

Tlocation = Wpos * Tpos + Wyel * T'vel + Wrace * Tface; (D
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Here, vy, is the target velocity. Uroot, Prar and Proot TEP-
resent the x-y plane velocity of the root, the x-y plane po-
sitions of the target and the root, respectively. f represents
the projection of the facing direction onto the x-y plane. ny,
is the normalized direction to the target:

ptar - f)root (5)
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Additional masks are applied to adjust the rewards based
on proximity or alignment: - If ||Par — Proat/] < 0.5, all
rewards are boosted. - If the agent is moving in the wrong
direction (N - Uroot) < 0), the velocity reward is set to zero.

In the second stage, the reward can be computed by
Treach = €XP (—||Dar — Preach||?). Here, preach represents
the position of the reaching end-effector (the palm center),
while p, represents the ideal reaching position. The ideal
position is defined as 0.2 m above the object, at a distance of
one-third of the table’s width from its center, and oriented
towards the direction from which the person approached.

In the third stage, the reward is defined by grasping-
related metrics, similar in UnidexGrasp [15]. This reward,
Tgrasp» €valuates the agent’s ability to successfully lift and
stabilize an object while maintaining effective grasp con-
trol. It combines three components: the grasp quality re-
ward, the object height reward, and the object velocity



penalty. These components are weighted and combined as
follows:

Tgrasp = Werasp * T'grasp_quality + Wheight * T"height + Wobj-vel * T'obj-vel s
(6)

where:

Tgrasp_quality = 2-0.5- dﬁnger —1.0- dhanda (7)

-
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hlift,target

Tobjvel = —0.2 - clamp(Vgbject — Vthreshold; 0, 5).  (9)

Here, dfnger denotes the distance between the agent’s
fingers and the object, while d}.nq represents the distance
between the agent’s hand and the object. Agpjeee is the
height of the object above the table, normalized by the tar-
get lifting height Ay rarger. The object height reward, 7height,
is applied only if the agent is in contact with the object.
Uobject indicates the velocity of the object and Uyeshold 18
a velocity threshold used to penalize excessive movement.
This reward structure effectively balances the need for pre-
cise grasping, stable lifting, and minimal object movement,
guiding the agent to complete the task efficiently and effec-
tively.

In the final stage, the reward is defined as 74,4, Which
combines the proximity of the agent to the target and its
grasp quality. The reward is computed as:

T'g0al = 3 Tlocation + 3 - Clamp(1-5 ~+ Tgrasp_quality » 0, 5) (10)

Here, 7jocation represents the location reward as defined in
the first stage, with the target position updated to match the
goal in this stage.

Furthermore, we include an additional reward, 7ge, de-
fined as a bonus granted when the transition condition is
satisfied.

1.4. Transition Condition

To ensure smooth progression between stages, a set of

transition conditions is defined. These conditions evaluate

whether the agent has successfully completed the current

stage’s objectives and is ready to move to the next stage.

The conditions are:

» The distance between the root and the object is less than
1 meter.

» The palm is directly above the object, with a vertical dis-
tance of less than 0.1 meters.

» The object is lifted vertically by more than 0.1 meters rel-
ative to its initial position.

1.5. Feature Alignment Mechanism

We aim for the generated motions to accomplish diverse
tasks at a macro-level, similar to the generated data, while
preserving realistic patterns at a micro-level. These patterns
represent common traits observed in real-world data. For
instance, humans naturally synchronize their right hand and
left foot to maintain balance, move their forearm driven by
the upper arm, and exhibit joints that rarely bend or have
limited bending angles. Intuitively, we hypothesize that
such patterns arise from local observations. To incorpo-
rate this understanding, we modified the architecture of our
critic network.

Previously, the network’s first layer directly processed
the entire 223-dimensional full-body observation through
three layers of MLPs. To better capture the hierarchical
nature of motion patterns, we introduce five separate sub-
networks, each dedicated to processing the local observa-
tions of specific body parts (torso and four limbs). Each
sub-network performs an initial transformation on its re-
spective input, producing part-specific features f;. These
features are then passed into the subsequent shared layers
of the network, enabling a more structured and progressive
analysis.

This revised architecture allows the network to focus
first on part-wise information, capturing localized patterns.
Then it gradually integrates information across different
parts, enabling the model to form increasingly global repre-
sentations. This hierarchical progression ensures that both
local patterns and global coherence are effectively captured.

As indicated in the pilot study, MoCap-Reach and
MoCap-Walk exhibit evident clustering in the shallow lay-
ers of the network, but this clustering diminishes in the
deeper layers. This observation suggests that, despite differ-
ences in orientation, real motions share common patterns,
particularly at the part-wise level. Additionally, the first
level of the network also demonstrates some degree of clus-
tering, which provides insights into shared coordinate sys-
tems across different body parts. These patterns are referred
to as “local features.”

Inspired by this clustering behavior, we introduce a regu-
larization term that encourages the generated motion to ex-
hibit similar local feature locations. Specifically, we aim for
the distance between two sets of features to remain within
the variance of walking data. During space tuning, we de-
rive the 10-step motion and input it into the original critic,
which is trained on walking motions, to calculate the mean
value of the features as the current feature f;(s, 2).

We then introduce an additional reward to align the gen-
erated features with the pre-calculated walking feature dis-
tribution. Let the i-th feature have mean p; and variance o;
respectively. The current feature is extracted, and the Ma-
halanobis distance is used to quantify its deviation from the
feature distribution:
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We add a constant € to avoid zero eigenvalues in o. The
reward is then:
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where wy, and thresy, represent the weight for feature
fi and the corresponding threshold, which prevents exces-
sive reduction in diversity. Notably, the feature extractor
takes both motions and latent variable z as input. For a
given motion, the discriminator (which only takes the state
as input) evaluates whether it matches the dataset, while the
critic also assesses whether the motion is aligned with the
initial space manifold. Since we can pre-compute the in-
verse of the covariance matrix, this avoids the need to re-
peatedly compute the inverse at each step, significantly sav-
ing computation time. In our approach, wy, is adjustable
during training. Our best-performing implementation aligns
the features only in the first two layers.

It is worth noting that many studies improve motion flex-
ibility by leveraging local motion information. For instance,
Jang et al’s Motion Puzzle [4] and Lee et al.’s physics-
based controllers [5] focus on enhancing motion adaptabil-
ity. PMP [2], on the other hand, provides greater flexibility
for non-repetitive motions. However, these methods often
overlook the interdependent patterns between body parts,
leading to challenges in maintaining balance and producing
natural motion.

1.6. Data Generation

Our method is similar to FLEX [14]. Utilizing pre-
trained hand-grasping [10] and human pose priors [13],
our approach employs a gradient-based optimization pro-
cess across multiple objectives to minimize losses related to
hand-object interaction, balance constraints, and task align-
ment to synthesis a grasping pose.

Once a grasping pose is synthesized, we interpolate it
into continuous motions. Specifically, denote the target
pose with root translation p = (Zreot, Yroots Zroot) and
joint local rotations ¢'*. Using spherical linear interpo-
lation (SLERP), we generate T' frames of motion start-
ing from an initial standing position with root translation
pitit = (0,0,0) and joint local rotations ¢i"'. At frame t,
the root translation p,, = (2o Ylors 2hoe) and joint local

rotations ¢} are computed as follows:

Ploot = slerp(pitie, pif /T (13)

qt = slerp(¢™, ¢, t/T) (14)

where slerp(-, -, &) denotes the interpolation and ¢ is the
current frame in the interpolation from the initial position to
the target pose over 7' frames.

Following this, we retarget the SMPL-X parameters to
our humanoid model, similar to InterScene [8], ensuring
that the generated motions align with the desired body struc-
ture and task requirements. To ensure physical plausibility,
we enforce constraints on the generated motion: the target
pose is set to rest on the left hand, and the minimum height
of both feet remains consistent with the ground throughout
the motion. By adhering to these constraints, the generated
motion not only respects physical limitations but also aligns
closely with task-specific objectives, such as precise hand-
object interactions.

2. Implementation Details
2.1. Dataset

Table 1 presents the motion capture files used in our dataset.
The dataset emphasize straightforward walk motion to-
gether with various but simple turning actions, constructing
the brief walk reference.

Each motion sequence lasts approximately 2-5 seconds,
capturing detailed and nuanced human locomotion dynam-
ics. The inclusion of varied turning motions alongside
straight walking ensures a well-rounded dataset suitable
for walking to, reaching for, grasping, turning and walk-
ing back. The weights assigned to each motion type reflect
their relative importance or frequency, with larger weights
assigned to simple walking sequences and smaller weights
to specific turning actions. This approach provides a bal-
anced representation, aiding in effective training and evalu-
ation.

2.2. Network Architecture

The network architecture builds upon the design used in
ASE [12], with modifications tailored to meet the require-
ments of our system.

The low-level policy is implemented as an actor network
that maps a state s and latent z to a Gaussian distribution
over actions. This policy is realized using a fully connected
network with three hidden layers of sizes [1024,1024,512]
(the same configuration as the encoder and high-level pol-
icy), followed by linear output units. The critic for the
value function divides its input into five components. Each
component is processed independently through a small fully
connected network. The resulting outputs are concatenated
and passed through a fully connected layer with a single
linear output unit, providing the value.

The encoder ¢(z|s, s’) and discriminator D(s, s’) are
jointly modeled by a shared network. Separate outputs are
used to compute the encoder’s mean /i4(s, s’), normalized
to ||pq(s, s')|| = 1, and the discriminator’s sigmoid output.



File Name

Weight

ACCAD_FemalelWalking_c3d_B9_-_walk_turn_left_(90) 0.01463157
ACCAD _FemalelWalking_c3d_B10_-_walk_turn_left_(45) 0.01463157
ACCAD_FemalelWalking_c3d_B11_-_walk_turn_left_(135) 0.01463157
ACCAD_FemalelWalking_c3d_B12_-_walk_turn_right_(90) 0.01463157
ACCAD _FemalelWalking_c3d_B13_-_walk_turn_right_(45) 0.01463157
ACCAD_Femalel1Walking_c3d_B14_-_walk_turn_right_(135) 0.01463157
ACCAD_FemalelWalking_c3d_B15_-_walk_turn_around_(same_direction)_s1  0.02663157
ACCAD_Femalel Walking_c3d_B15_-_walk_turn_around_(same_direction)_s2  0.02663157
ACCAD_FemalelWalking_c3d_B3_-_walk1 0.05263157
ACCAD_s007_QkWalk1 0.05263157
amp_humanoid_walk 0.05263157
CMU_07.01 0.10263157
CMU_07.02 0.10263157
CMU_07.07 0.10263157

Table 1. Walking Dataset: Weights for different walking and turning.

The high-level policy uses two hidden layers of sizes
[1024, 512] to generate unnormalized latents Z. These are
normalized to z = Z/||Z|| before being passed to the low-
level policy.

2.3. Simulation Environment

The experiments utilize Isaac Gym [7], which is a highly ef-
ficient physics simulator that operates on a GPU. The train-
ing process incorporates 4096 simultaneous environments
executed on one NVIDIA V100 GPU, achieving a simu-
lation rate of 120H z. Every neural network is developed
using PyTorch [9].

2.4. Training Details and Hyper-Parameters
2.4.1. Initial Space Training

We trained the initial space (the initial low-level policy) us-
ing a walking dataset. The training process spanned 10,000
epochs and took approximately 12 hours. Details of the
hyper-parameters are provided in Table 2.

2.4.2. Tuning with feature alignment

We tuned the initial space on the augmented dataset. This
training uses 3000-6000 epochs(depends on the converge
rate) and lasts for about 6-10 hours. We add a different
weight of the r/¢*s for different configurations. The con-
figuration [wf& W2, W3, Wed, Wes, Wy, Wy, wy,| repre-
sents the corresponding weight. The hyper-parameters can
be found in Table 3.

2.4.3. Active Strategy in Data Generation

We employ active strategy in generating data as formulated
below:
max; sr; — Srj

Wj = S0 t+ Wsyce N
max; sr; — 1min; sr;

max; p; — Pj (15)

+ Wisc

Hyper-parameters Value
Learning Rate 2e-5
Episode Length 300
Action Distribution Variance  0.055
Discount vy 0.99
TD(M) 0.95
Disc/Enc Mini-batchsize 4096
Policy Mini-batchsize 16384

Disc Grad Penalty Weight 5

Latent Dimension 64
Diversity Objective Bonus 0.01
Disc Weight Decay 0.0001
Enc Weight Decay 0.000
Disc Reward Weight 0.5
Enc Reward Weight 0.5

Table 2. Hyper-parameters for Low-level Policy Training

Feature Configurations ‘ Reward Weight | Threshold
[0,1,1,1,1,0,0,0] 0.008 1
[1,1,1,1,1,0,0,0] 0.008 1
[0,1,1,1,1,0.5,0,0] 0.005 1
[1,1,1,1,1,0.5,0,0] 0.005 1

[1,1,1,1,1,0.5,0.5, 0] 0.005 1

Table 3. Hyper-parameters for Features Alignment

where IW; denotes the overall score of the j-th task. In our
implementation, we set Sg, Wsycc, Wdise t0 0.2,0.4, 0.4, re-
spectively.

2.4.4. High-level Policy Training

Using a task-specific reward r = warg +wp, 7'p, +WpyTpss
we train a high-level policy to execute reaching and grasp-



ing. The training hyper-parameters are provided in Table 4.
Furthermore, the parameters related to the reward design are
detailed in Table 5.

Hyper-parameters Value
Learning Rate 2e-5
Episode Length 300
Action Distribution Variance 0.1
Discount y 0.99
TD(X) 0.95
Disc Mini-batchsize 4096
Policy Mini-batchsize 16384
LR Schedule constant
Disc Grad Penalty Weight 5

Disc Weight Decay 0.0001
wa 0.4
Wp, 0.2
Wpy 0.4

Table 4. Hyper-parameters for High-level Policy Training

Parameter Value
Wpos 0.3
Wyel 0.6
Wrace 0.1

Werasp 1.0

Wheight 2.0
Wobj-vel 1.0
h]ift,target 0.2m
Uthreshold 30m/s

Table 5. Reward Function Parameters

3. Experimental Details

3.1. Details about Baselines

In the implementation of AMP, we adopted a 7:3 ratio be-
tween the task loss and discriminator loss, which produced
the highest success rate during our experiments. When the
ratio was set to /:0, AMP degraded to Fullbody PPO. The
same ratio was used for AMP*, with the only difference be-
ing that the motion prior in AMP* was trained on a dataset
that included interpolated data, similar to Ours.

For PMP and PSE, we modified the discriminator in
AMP to a part-wise design and trained it on walking data.
In PMP, we adopted the same 7:3 ratio between the task loss
and discriminator loss as used in AMP. To further improve
the success rate, we implemented a dedicated arm module
for grasping, using rollout trajectories as references. During
the second and third stages of the reaching task, the right-
hand joints were encouraged to move closer to the refer-

ence. Similarly, in PSE, we introduced a part-wise discrim-
inator as well. However, in the space training stage, the task
and discriminator weight ratio was set to 7:1.

3.2. Details about User Study

In this study, human preference was used to evaluate the

naturalness of motions. Specifically, we recruited 100 vol-

unteers to compare the performance of different policies
through video-based assessments. The evaluation process
consisted of the following steps:

* Random Motion Generation: For each policy, we ran-
domly selected four sets of scene parameters and rendered
motion sequences for these parameters in the Isaac simu-
lator.

* Side-by-Side Video Comparison: For each pair of poli-
cies to be compared, the motion sequence videos were
presented side by side to the volunteers. Each video was
recorded from three different viewpoints, allowing the
volunteers to comprehensively observe the motion perfor-
mance.

* Volunteer Judgments: After viewing the videos, the vol-
unteers selected the policy that they perceived to exhibit
more natural motion.

The users will rate the motions from N different aspects,
selecting the best option for each aspect. The table in the
main text shows the results of these comparisons. The base-
line values represent the weighted sum of the proportion of
volunteers who selected the baseline policy as the better op-
tion(in our case, the weights are all %).

3.2.1. Users(Q): Quality Evaluation

This evaluation focuses on the overall quality of the mo-

tions. For the grasping process, we further divided the as-

sessment into four aspects: approaching the table, the grasp-
ing process, moving towards the target, and overall coher-
ence.

* Naturalness of Approaching the Table: This evaluates
how the integration of additional data influences the nat-
uralness of the original walking motion.

* Grasping Process: As a crucial part of the entire se-
quence, this examines how naturally the agent extends its
hand and successfully grasps the object.

* Moving Towards the Target: This assesses the agent’s
ability to recover and move towards the target smoothly
after grasping.

* Overall Coherence: This evaluates the naturalness of
transitions between different stages of the motion and the
overall intentionality of the entire sequence.

3.2.2. Users(I): Issues Judgment

In this evaluation criterion, we focus on the evaluation of
detailed issues. Users are instructed to pay attention to spe-
cific details we identified (commonly observed unnatural
patterns) and select the policy with fewer issues.



When comparing against the baseline, we highlighted
four representative and classic issues: shuffling, sliding,
near-loss of balance, and overly exaggerated or unnecessary
movements.

For the ablation study, we first asked a subset of users to
watch CIRCLE [1] interpolated data and real MoCap data.
From their feedback, we identified the most frequently men-
tioned issue keywords, which were then used as evaluation
criteria. We provided users with six motions correspond-
ing to a specific ratio and asked them to rank these motions
from worst to best based on the criteria mentioned above. A
motion ranked in the ¢-th position received a score of ¢ — 1.
Finally, the overall scores are presented in the table.

3.3. Details about Pred Score

Considering that the visual differences introduced by the
added features are relatively subtle, we adopted a more fine-
grained evaluation approach for this section. Specifically,
we used interpolated data generated by the CIRCLE strat-
egy as negative examples and real motion capture data as
positive examples to train a discriminator. This discrimina-
tor was then used to evaluate our generated motions. The
scores presented in the table represent the average scores of
1,000 randomly sampled motions.

Specifically, we utilized the pre-trained feature extrac-
tor from MotionGPT to extract 512-dimensional features.
Then these features were passed through three fully con-
nected layers with a structure [512, 128, 128, 1] per unit.
After activation, the final output was the score. We retained
the checkpoint with the best validation accuracy, achieving
a discrimination accuracy of 94.2%.

4. Additional Experiments and Visualization

4.1. Walking Phase Validation

Our method generates natural, high-quality walking mo-
tions, especially when far from the table (full video will be
provided instead of clipping around grasping). We evalu-
ated the Ist-phase motion using a discriminator trained on
walking MoCap, achieving disc rewards of 0.487 which
is close to those of directly reproducing motions using
ASE/AMP (0.503/0.516) and the oracle (0.492), com-
pared to the real data rewards of 0.892. During the pre-
grasping(2nd-phase), while our method demonstrates sig-
nificant improvements over existing approaches like Omni-
grasp and Braun’s, some motions exhibit artifacts like slid-
ing adjustments, primarily due to the need to generalize to
varying table widths and the inherent complexity of in-
teraction and collision avoidance. Even the oracle policy
in mid-height shows noticeable adjustments in generalized
scenarios. Noticing that MoCap data with high precision
does not fully address these challenges and MoCap has its
own limitations and biases, we turn to explore more flexi-

Figure 2. Comparison of f, alignment: The top image shows
no alignment, while the bottom with fp alignment reveals key
changes: the torso bends at the lower joint (red circle), a pas-
sive reach becomes a coordinated motion driven by the upper arm
(green circle), and a suspended leg transitions to a standing leg
(blue circle).

ble synthetic data.

4.2. Diversity of Motions

Diversity was not a primary focus in our approach, as we
prioritized maximizing SR during RL exploration and pose
generation. This led to optimized poses for different table
heights converging. Enhancing pose diversity and increas-
ing variance during exploration could yield different grasp-
ing patterns(shown in Figure 1).

4.3. More about Feature Alignment

In this section, we want to further analyze the effects of our
feature alignment mechanism.

First, the effect of adding a shallow layer is partic-
ularly evident in the partwise patterns. For example, as
shown in the red circles in Figure 2, when we add the torso
feature fJ, the bending pattern of the torso changes. Ini-



Figure 3. Visualization of Stability Enhancement through Feature Alignment: The lower figure, with f, and f; alignment, significantly
improves stability during both the grasp phase and the recover to walk stage. The left hand raises swiftly (indicated by the arrow), and the
left foot steps back quickly to maintain balance when grasping low objects.

tially, the bending originates from the closest joint to the
head (torsol, corresponding to the chest and neck). After
the addition, the upper body becomes mostly upright (bor-
rowed from the walk pattern), with the bending localized to
torso2 (similar to the waist). On the other hand, as indicated
by the green circles, the hand posture without alignment ap-
pears relatively relaxed. This frequently results in body tilt
dominating the motion, where the upper arm remains stiff
while the forearm dangles loosely in a reach pattern. How-
ever, after alignment, a more natural pattern emerges: the
upper arm drives the extension of the forearm, resulting in
a more straight and coordinated reaching motion.

Beyond the visual differences, it is even more critical
to emphasize the contribution of this feature to overall
stability. Specifically, we observe that this feature signifi-
cantly aids both the final stage of grasp and the recover to
walk phase. For example(as shown in Figure 3), with the ad-
dition of features(especially f;), the motion exhibits a clear
pattern where the left hand is swiftly raised and the left foot
quickly steps back to maintain balance when grasping very
low objects. This coordinated movement of the limb is par-
ticularly beneficial for dynamic balance during the recovery
phase in walk.

We observe that without the alignment of the features,
the agent adopts a more aggressive’ posture characterized
by a bent right leg and a lifted left foot. While this posture
is inspired by real grasping motions (e.g. actions similar
to picking up a small ball in the ground), these movements
rely on fine muscle coordination and balance that are chal-
lenging even for humans. Such extreme low-grasp postures
make it difficult to recover quickly, let alone maintain bal-
ance for the agent.

To achieve the same task, a more robust strategy can
be adopted to enhance the success rates. For example,
keep both feet grounded and squat sideways instead of tilt-
ing. This movement resembles natural upright postures and
walking, which inherently favor balanced grasping. This
strategy of “learning more stable task-completion mo-
tions” from walk can be further incorporated into hu-
manoid robotics to help execute tasks.

We alse observed that incorporating deeper features,
such as f5 and f3, during feature alignment can negatively
impact the overall learning of reaching skills. Specifi-
cally, when fs is included, the success rate decreases, even
falling below the performance achieved without additional
data. Furthermore, when f3 is added, the policy fails to
successfully walk to the table. This decline in performance
arises because deeper features capture more information
about global movement(as shown in the pilot study below).
For new datasets, the objective of reaching the target and the
goal of maintaining local features close to those from the
walking diverge significantly. This divergence introduces
inconsistency into the training process, leading to a disor-
ganized feature space that hinders effective learning of the
task.

4.4. Ablation Study of Data Ratio

In our active strategy, we emphasize maximizing the util-
ity of generated data to achieve high success rates with a
minimal data ratio. In this section, we provide a detailed
analysis of the impact of the data ratio on policy perfor-
mance and the role of "maximizing the utility of generated
data.”

As previously defined, the data ratio refers to the percent-



age of generated data relative to the original data used dur-
ing sampling. As shown in Figure 5, we observe that when
the data ratio is low, the success rate increases rapidly as the
ratio grows, peaking at around 20-30%. In this phase, the
active strategy plays a crucial role by specifically address-
ing tasks that walk data cannot handle, effectively avoiding
the addition of irrelevant data.

However, adding more data does not necessarily com-
pensate for the shortcomings of the random strategy. As we
can observed, the success rate drops sharply when the ratio
continuously increase, reaching nearly zero when the ratio
exceeds 1:1. This is because the excessive addition of data
makes learning the skill space more challenging. As new
data increases, natural walking and turning skills are for-
gotten. As shown in the Figure 4, when the ratio exceeds
1:1, the character struggles to perform natural turns. When
the ratio exceeds 1:2, the character focuses on switching be-
tween various skills to maintain balance, making it difficult
to walk effectively.

Even with a ratio below 1:1 (data ratio < 100), we ob-
serve that larger ratios result in significantly longer training
times. As seen in ASE [12], even well-balanced weight de-
signs require several days of training for relatively small
differences, such as a 30-minute skill. This further high-
lights the value of first training a fundamental walk space
then selectively expanding it. By doing so, we efficiently
learn the truly reusable “walk” skill and focus on the task-
relevant “reach” skill at minimal cost.

5. More about Pilot Study

5.1. Pilot study with larger dataset

In our pilot study, features from shallow layers show distinct
clustering in real data and lower FID values. In contrast,
deeper layers prioritize semantic information, reducing this
clustering. However, even in deep layers, the FID values
between MoCap Reach and MoCap Walk are lower than
those between MoCap Reach and Generated Reach.

We hypothesize that this discrepancy arises due to the
limited training data: although MoCap Reach and Gener-
ated Reach share similar global movements (e.g. reach-
ing), the critic primarily identifies that they are distinct from
“walk-like”” motions but lacks a comprehensive understand-
ing of the specific characteristics of reaching motions.

We believe that with a critic trained on a larger and more
diverse dataset, MoCap Reach and Generated Reach—both
representing similar semantic motions—would cluster more
closely in the deep layers. This would further support the
notion of a universal phenomenon: transferable local pat-
terns are captured in shallow layers, whereas deeper layers
reflect global, task-specific movements.

5.1.1. Dataset

To enhance the critic’s ability to understand motions, we
use more data to train the critic. The added data can be find
below in Table 6:

File Name Weight

RL_Avatar_Atk_Spin_Motion.npy 0.00724638
RL_Avatar_Standoff_Feint_Motion.npy 0.03105590
RL_Avatar_Dodge_Backward_Motion.npy  0.01552795
RL_Avatar_RunBackward_Motion.npy 0.01552795
RL_Avatar_WalkBackward01_Motion.npy  0.01552795
RL_Avatar_WalkBackward02_Motion.npy  0.01552795
RL_Avatar_Dodgle_Left_Motion.npy 0.01552795
RL_Avatar_RunLeft_Motion.npy 0.01552795
RL_Avatar_WalkLeft01_Motion.npy 0.01552795
RL_Avatar_WalkLeft02_Motion.npy 0.01552795
RL_Avatar_Dodgle_Right_Motion.npy 0.01552795
RL_Avatar_RunRight_Motion.npy 0.01552795
RL_Avatar_WalkRightO1_Motion.npy 0.01552795
RL_Avatar_WalkRight02_Motion.npy 0.01552795
RL_Avatar_RunForward_Motion.npy 0.02070393
RL_Avatar_WalkForwardO1_Motion.npy 0.02070393
RL_Avatar_WalkForward02_Motion.npy 0.02070393
RL_Avatar_Standoff_Circle_Motion.npy 0.06211180
RL_Avatar_TurnLeft90_Motion.npy 0.03105590
RL_Avatar_TurnLeft180_Motion.npy 0.03105590
RL_Avatar_TurnRight90_Motion.npy 0.03105590
RL_Avatar_TurnRight180_Motion.npy 0.03105590
RL_Avatar_Fall_Backward_Motion.npy 0.00869565
RL_Avatar_Fall_Left_Motion.npy 0.00869565
RL_Avatar_Fall_Right_Motion.npy 0.00869565
RL_Avatar_Fall_SpinLeft_Motion.npy 0.00869565
RL_Avatar_Fall_SpinRight_Motion.npy 0.00869565
RL_Avatar_Idle_Alert(0)_Motion.npy 0.00434783
RL_Avatar_Idle_Alert_Motion.npy 0.00434783
RL_Avatar_Idle_Battle(0)_Motion.npy 0.00434783
RL_Avatar_ldle_Battle_Motion.npy 0.00434783
RL_Avatar_Idle_Ready(0)_Motion.npy 0.00434783
RL_Avatar_Idle_Ready_Motion.npy 0.00434783
CMU_07_02.npy 0.04070393
CMU_07_01.npy 0.04070393
CMU_07_07.npy 0.04070393
amp-humanoid_jog.npy 0.08316768
amp_humanoid_walk.npy 0.09316768
amp_humanoid_run.npy 0.08316768

Table 6. Critic Dataset: Weights for different motions

5.1.2. Result

When using a critic trained with a larger dataset, we ob-
served deeper-level clustering of two macroscopic motion
types, particularly in the final two layers of the network.
At the same time, shallow-level clustering remained similar
to that observed with our previous critic(shown in Figure 7).
Although our dataset does not contain specific reaching mo-
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Figure 4. Visualization of Reaching and Grasping with Varying Data Ratios(%): At low data ratios, task completion improves rapidly
as the ratio increases. However, when the ratio exceeds 100%, the character struggles with natural turning, and beyond 200%, the character

shifts focus to balancing between skills, hindering effective walking.
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Figure 5. Success Rate Curve with Varying Data Ratio(%): Us-
ing a small data ratio allows for an active strategy that specifically
targets challenging tasks, resulting in better success rate. How-
ever, an excessively large data ratio can lead to a rapid decline in
the success rate.

tions, the increased data volume enhanced the critic’s under-
standing. As a result, the value predictions were no longer
solely based on “walk-like” patterns but also incorporated

the classification of macroscopic motion types.

Further pilot studies revealed that, under our critic net-
work architecture, shallow-level features effectively capture
the patterns of real motion and can transfer across different
motion types and tasks. In contrast, deeper-level features
encode more information about macroscopic motion forms
and semantic details.
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ARG S & i 5, » Mocap-reach
. ; &; X Synthetic data
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Figure 6. pilot study for various task

5.2. Pilot Study with various motions

Reaching and grasping are fundamental yet highly chal-
lenging tasks that require balancing high DOF while
enabling precise manipulation, making them a rigorous
testbed for motion generation. We also conducted pilot
studies across various tasks , obtaining consistent results.
All these motions are from AMASS [6]. For tasks beyond
reaching, like shown in the Figure 6, MoCap data cluster
together in shallow layers while synthetic data remain sep-
arated. These suggest our mechanism can capture transfer-
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Figure 7. t-SNE plots of features extracted at different levels of the more comprehensive critic network: There is clear clustering
within the MoCap data in shallow layers and a clear clustering within Reach data in deeper layers.

able patterns from walking beyond specific tasks.
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