Let Samples Speak:
Mitigating Spurious Correlation by Exploiting the Clusterness of Samples

Supplementary Material

In Section 1, we detailed the experimental setups,
datasets, and implementation frameworks utilized in our
study, including preprocessing pipelines, and training
method. Additionally, we present Class Activation Maps
(CAMs) visualizations in Section 2 to validate the mitiga-
tion of spurious correlations. Furthermore, we provide theo-
retical proofs of theorems underpinning our method in Sec-
tion 3.

1. Experiment Details

1.1. Datasets

* Waterbirds [7] is a dataset consisting of 4,795 training
images combining bird photos from the CUB dataset
[9] with background images from the Places dataset
[12]. The task is to classify landbirds and waterbirds.
The dataset is biased as most landbirds are shown with
land backgrounds and most waterbirds with water back-
grounds.

e CelebA [5] is a large-scale dataset with over 200,000
celebrity images, annotated with 40 attribute labels. The
task is to classify gender, which is spuriously correlated
with hair colors.

e MultiNLI [10] is a NLI dataset contains 433k sentence
pairs, whose class labels are entailment, contradiction, or
neutral. The spurious attribute is the presence of negation
words in the second sentence due to the artifacts from the
data collection process.

¢ CivilComments-WILDS [4] is a variant of the CivilCom-
ments dataset [1], which contains comments from the
Civil Comments platform. The task is to classify com-
ments as toxic or non-toxic, with demographic informa-
tion annotated for eight identities (male, female, LGBTQ,
Christian, Muslim, other religions, Black, White).

e CheXpert [3] is a chest X-ray dataset originating from
the Stanford University Medical center containing over
200,000 images.

1.2. Implementation Details

In this section, we detail the training configuration. Codes
and checkpoints will be released at https://github.
com/davelee-uestc/nsf_debiasing.
ARCHITECTURES & FRAMEWORKS We used the Py-
Torch implementation [6] of ResNet-50 [2] and the the Hug-
gingFace implementation [11] of bert-base-uncased, both
starting from pretrained weights. ResNet-50 for Waterbirds,
CelebA and CheXpert, and BERT for MultiNLI and Civil-

Comments.

PREPROCESSING OF IMAGE DATASET We apply an
augmentation pipeline including random resized cropping
with a target resolution of (224, 224), which resizes the
image to the specified resolution while randomly selecting
a scale between 70% and 100% of the original size and
a random aspect ratio between 0.75 and 1.33, with bilin-
ear interpolation. This is followed by a random horizontal
flip, which randomly mirrors the image horizontally with
p=0.5.

THE ERM TRAINING We train the ERM models us-
ing the following hyperparameters: Waterbirds with a batch
size of 32 and 100 epochs; CelebA and ChexPert with a
batch size of 100 and 20 epochs each; CivilComments-
WILDS and MultiNLI with a batch size of 16 and 10 epochs
each. The learning rate is set to 3e-3 for image datasets and
Se-5 for text datasets.

DEBIASING NSF uses the following hyperparameters:
For the Waterbirds dataset, 10 steps are used for learning the
transformation and 500 for fine-tuning the classifier. The
CelebA dataset uses 350 steps for learning the transforma-
tion and 110 steps for fine-tuning. For MultiNLI, it’s 1200
and 1500 steps, respectively. The CivilComments-WILDS
dataset uses 300 and 100 steps.

2. Additional Experimental Results

2.1. More CAM Visualizations

The CAM (Class Activation Map) visualizations in Figure
| illustrate the effect of biases in datasets such as CelebA,
Waterbirds, and Chexpert.

The CelebA dataset is known to have biases related to
hair color, which often correlates with gender classification
tasks. In the CAM visualizations, ERM model highlights
regions that correspond to hair color, indicating that the
model relies on this bias for classification. The model de-
biased using the proposed method shows a more distributed
activation across the face, indicating that the model is fo-
cusing more on the facial features rather than the biased hair
color.

In the Waterbirds dataset, the background is often cor-
related with the type of bird, leading models relying on
the background for classification rather than the bird itself.
CAM visualizations using ERM highlight the background,
whereas the visualization from the model debiased using the
proposed method show focus on the bird.

The Chexpert dataset includes chest X-rays where the
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Figure 1. CAM on the Waterbirds, CelebA, and CheXpert Datasets, visualizing using GradCAM.

medical devices (like pacemakers) correlate with certain ill-
ness. In ERM models, CAM visualizations might highlight
these medical devices, suggesting that the model uses them
as shortcuts for classification. The model debiased using
the proposed method focuses more on relevant areas of the
chest X-ray.

The visualizations reveal how standard models tend to
rely on biases (like background in Waterbirds, hair color in
CelebA, and medical devices in Chexpert) for classification.
In contrast, the model debiased using the proposed method
mitigates these biases, leading to more accurate and fairer
predictions.

3. Proof of Theorems

3.1. Data Distribution with Spurious Correlations

We adopt a data generation process from [8] to model the
joint data distribution (X,,Y,, A,) ~ p, under spurious
correlation. The label y € Y, follows the Uniform distribu-

-

tion over {1, —1}, the data point ¥ = [Ba,y,0] € X, and

the spurious feature a € A, are generated as follow:
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where N is the normal distribution, D is the dimension
of Z, p € (0.5,1) , and B > 1 is scalar constants.

3.2. Proof of Theorem 1

V(Zs, i, d;) € py, the relative distance between Z; and its
corresponding centroid Cy, , and another closest class cen-
troid ¢; € @ is
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Since a square cannot be negative, the assumption a; =
a; is false. Therefore, a; # a;.

3.3. Proof of Theorem 2
The conditional mean Cf = E[X,|Y = k], also known as
the centriod, can be estimated as
N

p_ L

C =
SN G =k 2

Here, we want to estimate the unbiased conditional mean
value of 7 in the true data distribution as Cj, = C}-°.
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where U, = {Z | (&,y) € pp,y = k. d(Z,p) > 0}, Vj, =
{Z](Z,y) € ppyy =k} \ Uy, U € Uy, U; € V.
Proof
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With Theorem 1, it has
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