
Lifting Motion to the 3D World via 2D Diffusion

Supplementary Material

The supplementary material includes details on the imple-
mentation, evaluation, data preparation, and limitations. We
also encourage readers to watch our supplementary video
and project page for more qualitative results.

1. Implementation Details

Model Architectures. Our denoising network in Stage
1 (line-conditioned 2D motion diffusion) employs a
transformer-based architecture with four self-attention
blocks. Each block consists of a multi-head attention layer
and a position-wise feed-forward layer. The self-attention
layer uses four attention heads, and the dimension of the key,
query, and value is 256. The model is trained on motion data
with a window size of 120 at 30 fps.

For the denoising network in Stage 4 (multi-view 2D mo-
tion diffusion), we adopt the same model architecture, with
an added cross-view attention layer in each block. Similar to
the positional embeddings in the transformer model, we use
sinusoidal encoding to generate view embeddings, which are
added before each cross-view attention layer to distinguish
different views.
Details of Multi-View 2D Sequence Optimization. In
Stage 2, we use the Adam optimizer with a learning rate of
0.001 to optimize 2D pose sequences across five different
views. The optimization process requires 5000 steps. At
each step, we randomly sample a noise level from [1, 999]
for optimization using Score Distillation Sampling (SDS).
Data Processing of 2D Pose Sequences. A 2D pose se-
quence represents a sequence of 2D keypoint positions. In
Stages 1 and 4, we conduct a data normalization for 2D pose
sequences. We normalize each 2D sequence through two
steps: (1) translating the entire sequence based on the root
joint position of the first frame, and (2) computing a scale
factor that adjusts the first pose’s bounding box size to fall
within a target range [smin, smax], then applying this same
scale factor to all frames in the sequence. For the 2D pose
input, we center the sequence on the first frame’s root joint
and detect invisible keypoints to create a visibility mask that
is consistently applied across all camera views. With our
virtual cameras positioned strategically around the centered
root, the majority of pose keypoints typically remain visible
from all views throughout our standard 120-frame motion
sequence window.
Details of Multi-View 2D Motion Diffusion Model. The
“fixe” camera setup in our approach refers to the predefined
relative angles between our predicted auxiliary views (90°,
180°, 270° relative to the input view), rather than constrain-
ing the absolute camera viewpoint in world space. This

design ensures that MVLift can effectively process 2D pose
sequences captured from any arbitrary viewpoint, eliminat-
ing restrictions on the initial camera positioning during cap-
ture.
Optimization Efficiency in Stage 2. Our Stage 2 optimiza-
tion takes 10 minutes for a batch (32 sequences) to generate
5 views. Sequences can be optimized in parallel, enabling
scalable processing for generating a synthetic 3D motion
dataset in Stage 3.

2. Evaluation Details

Baseline Details. MAS [2] was originally designed for the
unconditional 3D motion synthesis task without relying on
3D ground truth motion data. To adapt MAS to our setting,
where 3D motion is predicted from a 2D pose sequence,
we modified the optimization objective for a single camera
view and replaced the 2D pose sequence in the selected view.
Additionally, we increased the optimization weight for the
input view to encourage better alignment with the input 2D
sequence, as suggested by the authors of MAS.
FID Evaluation for 2D Pose Sequences. For a generated
3D motion sequence to be realistic, the reprojected 2D pose
sequences in different views should appear natural and re-
alistic. Therefore, for evaluation datasets without available
3D ground truth motion (Steezy, NicoleMove, CatPlay), we
introduce FID evaluation for 2D pose sequences reprojected
from the generated 3D motion of each approach. Prior work
on text-to-motion synthesis tasks [1] proposed training a
motion feature extractor using an autoencoder. Similarly, we
train an autoencoder for 2D pose sequences to represent a
window of motion as latent vectors. This autoencoder con-
sists of an encoder and a decoder, both based on a temporal
convolution model architecture. During training, we use a re-
construction loss and a latent vector sparsity loss, following
previous work.

3. Dataset Details

AIST++. We used a subset of AIST++ [5]. While the
original dataset provides 10 camera views per sequence, we
randomly selected one view per sequence for our experi-
ments. Following the original paper’s data split, we used 611
sequences for training and 360 sequences for testing.

Steezy. We utilized dance videos from prior work [3]. The
dataset was randomly split into 726 videos for training and
81 videos for testing. Since Steezy videos typically fea-
ture multiple dancers, we manually verified the 2D pose
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sequences extracted by ViTPose for the testing set. We dis-
carded sequences showing non-dancing audience members,
resulting in 33 high-quality test sequences with durations
ranging from 20 seconds to 2 minutes.

NicoleMove. We collected videos from the YouTube chan-
nel “Move With Nicole” [6]. Each video was clipped into 10-
second segments. The dataset was randomly split into 13,212
sequences for training and 1,468 sequences for testing. We
used ViTPose [7] to obtain 2D keypoints and generate 2D
pose visualizations for each sequence. For the testing set,
we manually verified and filtered the sequences, discarding
those with noisy predictions or redundant similar motions.
This curation process resulted in a representative testing set
of 106 sequences.

CatPlay. We captured monocular videos of 2 subjects play-
ing with a cat teaser, with each video featuring a single cat.
This dataset was collected in an indoor environment. We
captured 20 videos, each lasting 10 to 20 minutes. For each
video, we first clipped them into 5-second segments. Then
we used an advanced keypoint estimation approach [8] to
generate 2D keypoints and obtain 2D pose visualizations
for each clip. We manually verified each 2D sequence visu-
alization and discarded those where the subject was out of
the camera view or had very noisy predictions. Finally, we
obtained 343 sequences for training and 82 sequences for
testing.

OMOMO. OMOMO [4] is a human-object interaction
dataset containing motions with 15 different objects. For
our experiments, we focused on interactions with a largebox
object. The dataset provides 5 marker positions captured
during motion capture sessions. Following the original data
split, we used sequences from 15 subjects for training (896
sequences) and 2 subjects for testing (119 sequences).

4. Limitations

While our approach demonstrates superior results across var-
ious datasets, there are some limitations. First, our current
problem formulation requires the 2D pose sequence to be
captured in a static camera setting. Second, we do not cur-
rently apply any physics-based constraints, which means ar-
tifacts such as feet-floor penetration and feet floating cannot
be entirely prevented. Addressing these limitations presents
interesting and promising directions for future work.
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