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In this supplementary, we first describe the architecture
and training process of the scene-agnostic feature back-
bone (Sec. 1). Then, we describe the architecture and train-
ing process of the scene-specific head (Sec. 2). We fur-
ther provide additional results (Sec. 3). Finally, we show
more visualizations on the QEOxford [1, 8], Oxford [1], and
NCLT [11] datasets (Sec. 4).

1. Scene-agnostic Feature Backbone
1.1. Backbone Architecture
Inspired by the DSAC∗ [2], we adopt the backbone of
SGLoc [8], modifying it by reducing the feature dimension
and the number of residual layers. As a result, the parameter
count decreases significantly from 55M to 16M. The archi-
tecture of our backbone is illustrated in Fig. 1. The back-
bone processes a point cloud as input, progressively reduc-
ing the spatial resolution to 1

8 while increasing the channel
dimension to 512.

1.2. Backbone Training
We use the nuScenes dataset [4], including both Trainval
and Test splits, totaling 350K samples, to train the scene-
agnostic feature backbone. The nuScenes dataset is col-
lected using sensors mounted on two autonomous-capable
Renault Zoe cars, equipped with identical sensor layouts,
operating in Boston and Singapore—two cities known for
their dense traffic and challenging driving conditions. The
point cloud is captured by a Velodyne HDL-32E LiDAR
with a frequency of 20Hz. The ground truth pose is obtained
using an Advanced Navigation Spatial GPS&IMU system,
offering a position accuracy of 20mm, a heading accuracy
of 0.2◦ with GNSS, and roll&pitch accuracy of 0.1◦.

We first apply the K-Means clustering and manually
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Figure 1. Architecture of the scene-agnostic feature backbone.
The parameter count is about 16M.

(a) Singapore Queenstown (b) Singapore One North

(c) Singapore Holland Village (d) Boston Seaport
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Figure 2. Illustration of the multi-scene division in nuScenes.
The scene indices and the number of samples are reported.

modify the results to divide the dataset into multi-scenes.
The results are shown in Fig. 2, where we report the scene
indices and the number of samples in each scene. We train
our backbone on 18 scenes in parallel, attaching 18 regres-
sion heads to it. Each regression head is a multi-layer per-
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Figure 3. Architecture of the sample classification head. Part 1
is used for guiding SCR while Part 2 is used in extended applica-
tions requiring finer classification. This figure includes both parts
to demonstrate the adaptability to different use cases.

ception with 6 layers and a width of 512. There is a skip
connection after the first 3 layers of each head. We train
the backbone with half-precision floating point weights. We
perform random translation and rotation data augmentation
on the input point clouds. Specifically, there is a 50%
chance of translating along the x and y axes by -1 to 1 me-
ters, rotating around the roll and pitch axes by -5◦ to 5◦, and
rotating around the yaw axis by -10◦ to 10◦. It is important
to note that, regardless of how point clouds are transformed,
the learned ground truth remain consistent.

We train the backbone using a batch size of 32 samples
per regression head. To prevent memory overflow, we pro-
cess the forward and backward passes for 3 regression heads
at a time. Gradients are accumulated across all 18 regres-
sion heads before performing a single parameter update.

2. Scene-specific Head

2.1. Head Architecture
In a new scene, we need to train a sample classification net-
work and a SCR. Therefore, we have a classification head
and a regression head. We now introduce each of these two
heads in detail.

As we described in the main paper, inspired by recent
work [5, 6, 10], we implement the hierarchical classifica-
tion network as the base and hyper network. Fig. 3 illus-
trates the complete sample classification head, designed to
support both SCR and extended applications. The input is
the feature after global max pooling. As shown in Part 1,
at the first level, the feature map from global max pooling
is fed to an MLP to output the classification probability fea-
tures Fk1

with k1 categories. Starting from the second level,
as shown in Part 2, the feature pattern is modulated by a hy-
per network, according to the classification probability from
the previous level. The intuition of the modulation [12] is
that similar feature patterns appearing in different regions
should be classified under different labels. Then, an MLP
is used to output the second level classification probability
feature Fk2

with k2 categories.
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Figure 4. Architecture of the regression head. k1 is the number
of clusters.

In the sample classification guidance, only Part 1 is used
to help SCR learning. Part 2 is employed only when ad-
dressing accumulated errors in SLAM, where finer classifi-
cation results are required.

Fig. 4 is the regression head, corresponding to the MLP
in the SCR of Fig. 2 in the main paper. The input is the
concatenated features: scene distribution features perturbed
by Gaussian noise (standard deviation of 0.1) and dense de-
scriptors obtained from the scene-agnostic backbone. The
features are transformed by a residual block, which is fol-
lowed by 2 sequential residual blocks. Finally, three FC
layers are applied to get the corresponding point cloud in
the world coordinates.

2.2. Head Training
In this paper, we train the scene-specific heads on QEOx-
ford [1, 8], Oxford [1] and NCLT [11] datasets, respectively.

The Oxford dataset is collected in January 2019 along a
central Oxford route, capturing a variety of weather (sunny,
overcast) and lighting conditions (dim, glare) that make lo-
calization challenging. Following [8, 14], we use data from
11-14-02-26, 14-12-05-52, 14-14-48-55, and 18-15-20-12
for training, and data from 15-13-06-37, 17-13-26-39, 17-
14-03-00, and 18-14-14-42 for testing. The same trajecto-
ries are also selected from the QEOxford dataset, where
GPS&IMU errors are corrected using the PQEE [8].

The NCLT dataset is collected approximately biweekly
from January 8, 2012 to April 5, 2013, on the University
of Michigan’s North Campus. It includes a variety of en-
vironmental changes, such as seasonal variations, lighting
conditions, and changes in building structures. The dataset
also covers both indoor and outdoor scenes, which adds to
the complexity. For our experiments, we use the data from
2012-01-22, 2012-02-02, 2012-02-18, and 2012-05-11 as
the training set, and the data from 2012-02-12, 2012-02-19,
2012-03-31, and 2012-05-26 as the test set.

For classification head training, as mentioned in the main
paper, we accelerate the process by creating a buffer on the
GPU to store global features and their associated classi-
fication labels. The buffer is filled by cycling repeatedly
through the shuffled training sequence. Each point cloud is



Training Test

Figure 5. Illustration of training and test trajectories of NCLT.
We use a black dashed circle to highlight the unknown region in
the test trajectory.

augmented using a similar approach to the backbone train-
ing. The classification head is then trained by iterating over
the shuffled buffer. Specifically, within a 5-minute training
period (including the time spent filling the buffer), we com-
plete 50 epochs.

For regression head training, we first apply the same data
augmentation used in the backbone training to each frame
of the input point cloud. Then, the point cloud is passed
through the feature backbone to obtain dense descriptors.
The features from the classification head are normalized
to the unit sphere, Gaussian noise is added, and the fea-
tures are normalized back to the unit sphere. Finally, the
two feature sets are concatenated, and 256 voxels are ran-
domly selected to learn their corresponding global coordi-
nates through regression. Throughout this process, we also
apply the proposed redundant sample downsampling tech-
nique to enhance efficiency.

2.3. Implementation Details
For the Oxford and QEOxford datasets, we set the voxel
size to 0.25. During classifier training, the number of clus-
ters k1 and k2 are configured to 25 and 100, respectively. A
150MB buffer is constructed on the GPU to store features,
enabling rapid training over 50 epochs within 5 minutes,
following the ACE [3]. In the regressor training stage, the
downsampling ratio rd in RSD, along with the start epoch
rst, stop epoch rsp, and total training epochs E, are set to
0.25, 0.25, 0.85, and 25, respectively.

For the NCLT dataset, the voxel size, buffer size, and k1
are set to 0.3, 120MB, and 100, respectively. In the regres-
sor training phase, the rd and E are configured to 0.15 and
30, respectively.

3. Additional Results
3.1. Results of 2012-05-26 on NCLT
As described in Tab. 3 of the main paper, we discard areas
with localization failure, as regression-based methods can-
not generalize to unknown regions. Details follow.

As shown in Fig. 5, we present the training and test tra-
jectories of the NCLT dataset, highlighting the unknown re-

Methods HypLiLoc DiffLoc SGLoc LiSA Ours
Area Included 2.90/3.47 1.88/2.43 3.81/4.74 3.30/2.84 3.81/3.48
Area Excluded 2.29/3.34 1.36/2.48 3.48/4.43 3.11/2.72 3.10/3.26

Table 1. Results on the 2012-05-26. We report the mean error
[m/◦] with unknown area included and excluded.

Methods 15-13-06-37 17-13-26-39 17-14-03-00 18-14-14-42 Average
nuScenes 0.82/1.12 0.85/1.07 0.81/1.11 0.82/1.16 0.83/1.12
KITTI 1.56/1.79 1.60/1.73 1.16/1.69 1.69/1.70 1.50/1.73

Table 2. Results on QEOxford dataset. We report the mean
error [m/◦] for scene-agnostic feature backbone training on the
nuScenes and KITTI datasets.

Methods 15-13-06-37 17-13-26-39 17-14-03-00 18-14-14-42 Average
nuScenes 2.33/1.21 3.19/1.34 3.11/1.24 2.05/1.20 2.67/1.25
KITTI 3.49/2.71 4.15/2.79 3.70/2.59 3.40/2.43 3.69/2.63

Table 3. Results on Oxford dataset. We report the mean er-
ror [m/◦] for scene-agnostic feature backbone training on the
nuScenes and KITTI datasets.

Methods 2012-02-12 2012-02-19 2012-03-31 2012-05-26† Average
nuScenes 0.98/2.76 0.89/2.51 0.86/2.67 3.10/3.26 1.46/2.80
KITTI 1.51/4.15 1.61/3.70 1.46/3.99 5.77/5.30 2.59/4.29

Table 4. Results on NCLT dataset. We report the mean er-
ror [m/◦] for scene-agnostic feature backbone training on the
nuScenes and KITTI datasets.. † indicates that we discard areas
with localization failure, as regression-based methods cannot gen-
eralize to unknown regions.

gion in 2012-05-26. Previous work [13] demonstrates that
regression-based methods are not guaranteed to generalize
from the training data in practical scenarios. We also report
the results with and without the area, as shown in Tab. 1.
It is clear that when the area is excluded, the errors of the
different methods are significantly reduced. For a fair com-
parison of the methods, we report the results after excluding
these regions, where the methods fail to provide useful in-
formation, and the results are essentially unreliable.

3.2. Results of Training Backbone on KITTI
In this section, we train the scene-agnostic feature back-
bone using the KITTI dataset [7, 15]. Since KITTI provides
ground truth poses only for the training set (trajectories 00-
10, totaling 23K samples), we use these 11 trajectories to
train the backbone. The KITTI dataset, collected in Karl-
sruhe, Germany, utilizes the autonomous driving platform
Annieway. It captures diverse real-world driving scenarios,
including urban, rural, and highway environments. Point
clouds are recorded using a Velodyne HDL-64E LiDAR op-
erating at 10Hz, while ground truth poses are derived from
a GPS&IMU system.

Similar to the backbone training with the nuScenes



dataset, as described in Sec. 1, we train the backbone across
11 scenes in parallel, attaching 11 regression heads to it.

Then, we follow Sec. 2 to train the scene-specific predic-
tion heads on the QEOxford, Oxford, and NCLT datasets.

Tab. 2, Tab. 3, and Tab. 4 present the comparison re-
sults of training the backbone on the nuScenes dataset, eval-
uated across three different datasets. The results clearly
show a decreasing trend in performance. Specifically, on
the QEOxford dataset, position and orientation accuracy
decrease by 80.7% and 54.5%, respectively. In the Ox-
ford and NCLT datasets, the corresponding decreases are
38.2%/110.4% and 77.7%/53.2%, respectively. We con-
clude that this is primarily due to insufficient data and dif-
ferences in LiDAR types. This motivates us to incorpo-
rate data from more scenes, platforms, and LiDAR types to
jointly train the backbone in future work, further enhancing
its generalization capabilities.

4. Visualization
We show more visualization results of the top 4 methods
in the main paper (DiffLoc [9], SGLoc [8], LiSA [14], and
the proposed LightLoc) in Fig. 6, Fig. 7, and Fig. 8 on the
QEOxford, Oxford, and NCLT datasets, respectively.

Clearly, compared to the existing state-of-the-art
method, LiSA, our predicted trajectories yield comparable
results in terms of accuracy.

It is important to emphasize that our work primarily fo-
cuses on minimizing training time and reducing parameter
storage requirements. While our method may not always
outperform others on all test trajectories, it consistently
achieves results within one hour of training on large-scale
datasets, which is significantly faster than current state-of-
the-art methods. LightLoc achieves an effective balance be-
tween training time and performance, making it a practical
solution for time-sensitive applications such as autonomous
driving, drones, and robotics.
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Figure 6. LiDAR localization results on the QEOxford [1, 8] dataset. The ground truth and prediction are black and red lines, respectively.
The star denotes the first frame. The caption of each subfigure shows the mean position error (m) and orientation error (◦). For each
trajectory, we highlight the best and second-best results.
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Figure 7. LiDAR localization results on the Oxford [1] dataset. The ground truth and prediction are black and red lines, respectively. The
star denotes the first frame. The caption of each subfigure shows the mean position error (m) and orientation error (◦). For each trajectory,
we highlight the best and second-best results.
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Figure 8. LiDAR localization results on the NCLT [11] dataset. The ground truth and prediction are black and red lines, respectively. The
star denotes the first frame. The caption of each subfigure shows the mean position error (m) and orientation error (◦). For each trajectory,
we highlight the best and second-best results.
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