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1. More Implementation Details
In our main paper, we equip LaVie [14] and VideoCrafter
[2] with our LongDiff to generate 128-frame (i.e., N =
128) long videos. Following [9, 10], during sampling, we
employ the noise shuffle mechanism and perform DDIM
sampling with 50 denoising steps. We set G in Eq.(3) to
16. The weighting factor α in Eq.(10) is set to 2. We set the
neighbor range L in Eq.(11) to 8. In addition to the neighbor
frames, we also select n = 8 key frames for temporal atten-
tion computation. Notably, we uniformly sample 50% of
the temporal attention layers in the short video model and
replace them with our LongDiff module. All experiments
are conducted using NVIDIA 6000 Ada GPUs.

2. More Evaluation Metrics Details
Following FreeLong [9], we use metrics from VBench [6]
to evaluate video quality. For video consistency, we report:
1) Subject Consistency (SC), measured by DINO [1] fea-
ture similarity across frames, to check object appearance
stability, and 2) Background Consistency (BC), calculated
with CLIP [11] feature similarity across frames. For video
fidelity, we assess 1) Motion Smoothness (MS) using AMT
[8] motion priors, 2) Temporal Flickering (TF) via mean
absolute difference between static frames, and 3) Imaging
Quality (IQ), measured by MUSIQ [7]. For video-text con-
sistency, we employ Overall Consistency (OC) from Vi-
CLIP [15] to capture both semantic and style information.

3. Additional Ablation Studies
We here conduct more ablation experiments about our
LongDiff based on the short video model LaVie.

3.1. Impact of the Number of Position Groups

In Position Mapping (PM), we map 2N−1 (from −(N−1)
to (N − 1)) original relative positions into 2G − 1 groups
to make the model avoid handling large numbers of distinct
positions. In our main paper, we set G = 16 for LaVie.
Here we evaluate other choices of G, and report the results
in Tab. 1. We find that performance improves when we in-
crease G, until G reaches 16, where the improvement tapers
off. Thus, we set G = 16.

3.2. Impact of the Number of Key Frames

In our LongDiff, we establish temporal correlations be-
tween each frame and its neighboring frames, as well as
n key frames selected using a key-frame detection pipeline.
Here, we also evaluate other choices of n. As shown in

Method SC ↑ BC ↑ MS ↑ TF ↑ IQ ↑ OC ↑
G = 8 93.47 95.68 95.72 94.19 66.53 23.77
G = 12 96.19 97.17 96.74 95.74 67.88 24.42
G = 16 98.10 98.23 97.46 96.84 68.83 25.24
G = 20 97.25 97.76 97.14 96.45 68.41 24.98

Table 1. Ablation study for the number of position groups.

Method SC ↑ BC ↑ MS ↑ TF ↑ IQ ↑ OC ↑
n = 4 92.96 95.98 96.97 94.67 67.65 24.65
n = 6 97.19 97.52 97.18 95.74 68.11 25.01
n = 8 98.10 98.23 97.46 96.84 68.83 25.24
n = 10 97.52 97.85 97.29 96.18 68.31 25.13

Table 2. Ablation study for the number of key frames.

Tab. 2, the model performance reaches optimal results at
n = 8. Thus, we set n = 8 in the experiments to achieve a
good result.

3.3. Impact of the Number of Neighbor Frames

Here, we also explore the impact of using different numbers
L of neighbor frames for temporal attention computation.
As shown in Tab. 3, the model’s performance reaches its
highest value at L = 8. We thus set L = 8 in our experi-
ments.

Method SC ↑ BC ↑ MS ↑ TF ↑ IQ ↑ OC ↑
L = 2 94.11 96.18 95.28 94.54 65.77 23.61
L = 4 96.90 97.61 96.84 96.15 67.91 24.76
L = 8 98.10 98.23 97.46 96.84 68.83 25.24
L = 16 96.43 97.37 96.55 95.87 67.58 24.59

Table 3. Ablation study for the number of neighbor frames.

3.4. Impact of the Mechanism to Down-Sample
Video Features

In our LongDiff, we use a combination of max-pooling,
average-pooling, and min-pooling operations to reduce the
channel dimension of the video feature F to three channels,
aligning it with the input shape required by the key-frame
detection pipeline. Here, we evaluate the efficacy of this
mechanism by comparing the following variants: 1) Max,
where only the max-pooling operation is used, and the re-
sult is replicated three times along the channel dimension.
2) Min, where only the min-pooling operation is used, and



Method SC ↑ BC ↑ MS ↑ TF ↑ IQ ↑ OC ↑
Max 97.28 97.70 97.02 96.58 68.37 25.06
Min 96.71 97.33 96.71 96.40 68.33 24.93
Average 97.67 97.95 97.23 96.73 68.68 25.14

Ours 98.10 98.23 97.46 96.84 68.83 25.24

Table 4. Ablation study for the mechanism to downsample video
features.

the result is replicated three times along the channel dimen-
sion. 3) Average, where only the average-pooling operation
is used, and the result is replicated three times along the
channel dimension. As shown in Tab. 4, we observe that us-
ing the combination of max-pooling, average-pooling, and
min-pooling operations achieves the best performance. No-
tably, all of these variants of our LongDiff consistently out-
perform the previous state-of-the-art methods[9, 10].

3.5. Impact of the Weighting Factor α

In our LongDiff, we use two measures—image entropy and
frame differencing—to select the most important frame in
each shot of the pseudo-video as a key frame. Here, we
evaluate the impact of α, which weights these two mea-
sures, and report the results in Tab. 5. As shown, the model
achieves the best performance with α = 2. Therefore, we
set α to 2 in our experiments to obtain optimal results.

Method SC ↑ BC ↑ MS ↑ TF ↑ IQ ↑ OC ↑
α = 0 97.10 97.58 96.92 96.53 68.47 25.02
α = 1 97.44 97.83 97.21 96.69 68.61 25.11
α = 2 98.10 98.23 97.46 96.84 68.83 25.24
α = 3 97.94 98.12 97.37 96.79 68.77 25.20

Table 5. Ablation study for the weighting factor α.

3.6. Impact of the Key-Frame Selection Measures

In LongDiff, we use the combination of two measures, im-
age entropy and frame differencing, to select informative
key frames by comparing the following variants: 1) w/o En-
tropy, where only image entropy is used as the sole measure
to select key frames. 2) w/o Differencing, where frames are
selected solely based on the frame differencing measure. As
shown in Tab. 6, the combination of these two measures
yields the best results. In addtion, both variants outperform
previous training-free methods[9, 10].

3.7. Impact of the Proportion of LongDiff Modules

In our main experiments, we uniformly replace 50% of
the temporal attention layers in the short video model with
our LongDiff modules. Here, we explore the impact of

Method SC ↑ BC ↑ MS ↑ TF ↑ IQ ↑ OC ↑
w/o Entropy 97.10 97.58 96.92 96.53 68.47 25.02
w/o Differencing 97.35 97.75 97.06 96.61 68.50 25.02

Ours 98.10 98.23 97.46 96.84 68.83 25.24

Table 6. Ablation study for the key-frame selection measures.

varying the proportion of the number of replaced tempo-
ral attention layers with LongDiff modules. As shown in
Tab. 7, the performance improves noticeably when the pro-
portion of LongDiff is below 50%, and the improvement
trend plateaus beyond this point. Based on this observa-
tion, we choose to uniformly replace 50% of the temporal
attention layers with our LongDiff modules to achieve good
results while maintaining efficiency.

Method SC ↑ BC ↑ MS ↑ TF ↑ IQ ↑ OC ↑
Proportion 25.0% 94.86 96.14 96.07 95.30 66.53 23.94
Proportion 50.0% 98.10 98.23 97.46 96.84 68.83 25.24
Proportion 75.0% 98.40 98.51 97.63 96.98 68.92 25.25

Table 7. Ablation study for the proportion of LongDiff modules.

4. More Qualitative Results
In this section, we provide more qualitative results regard-
ing the ablation study of the main components of LongDiff
(see Fig. 1), longer video generation (see Fig. 2), multi-
prompt video generation (see Fig. 3), and more generated
videos (see Fig. 4 and Fig. 5).

5. Proofs
5.1. Detailed Proof of Theorem 1

Here, we provide a detailed proof of Theorem 1, which is
mainly based on [4]. For ease of reading, we restate Theo-
rem 1 from the main paper below.

Theorem 1. Define the attention logit function in tempo-
ral attention as f(q,k, p), which maps the query frame q,
key frame k, and their relative position p to a scalar value.
Consider a video generation task with N frames, where the
model categorizes the 2N−1 relative positions into g(N)
groups. Here, g(N) ∈ N is a non-decreasing and un-
bounded function representing the model’s capability to dif-
ferentiate relative positions. Additionally, assume that any
two relative positions p and p′ within the same group sat-
isfy df (p, p

′) ≤ ϵ, where df is the distance function associ-
ated with the attention logit function f . Then the following
holds:

sup
−(N−1)≤p≤N−1

|f(q,k, p)| ≥
(
g(N)

2

) 1
2r ϵ

4e
(1)



Prompt: a polar bear playing drum kit in NYC Times Square, 4k, high resolution

Direct

w/o PM

w/o IFS

Ours

Figure 1. Ablation Study of the Main Components of LongDiff. Here, we show the qualitative comparison of LongDiff with two
variants: Ours (w/o PM), where we remove the GROUP and SHIFT operations and thus use the original relative positions to compute
temporal attention. 2) Ours (w/o IFS), where we remove the IFS mask in temporal attention computation, requiring each query frame to
correlate with all frames for information passing during video generation. As shown, videos generated from the (w/o PM) variant exhibit
abrupt temporal transition between frames, particularly noticeable in the bear’s hand. On the other hand, videos generated from the (w/o
IFS) variant lack some visual details, manifesting as as a blurry “NYC Times Square”. We illustrate inferior temporal consistency and the
the visual detail issues using red and orange boxes, respectively.

Prompt: dropping flower petals on a wooden bowl

Figure 2. Longer Video Generation. Here, we equip VideoCrafter[2] with our LongDiff to generate 256-frame videos. As shown, these
generated videos maintain temporal consistency and visual details. This further demonstrates the efficacy of out method.

where r is the pseudo-dimension of the function class H =
{f(·, ·, p) | p ∈ Z}, and e is the Euler’s number.

The distance function df can be rewritten in a more de-
tailed form as:

df (p, p
′) = Eq∼Q,k∼K(f(q,k, p)− f(q,k, p′))2 (2)

where Q and K are the trained distributions for q and k. To
assist in proving the inequality in Theorem 1, the following
lemma is introduced from [5].

Lemma 1. Let H = {h(z)} be a family of functions that
map a set Z into [0,M ] with pseudo-dimension dimP (H) =
r, where 1 ≤ r < ∞. Let P be a probability measure on Z.
Then, for all 0 < ϵ ≤ M , the ϵ-cover of H under the metric
d(h1, h2) = Ez∼P (h1(z)− h2(z))

2 is bounded by:

NP (ϵ,H, d) ≤ 2

(
2eM

ϵ
ln

2eM

ϵ

)r

(3)

where NP (ϵ,H, d) is the cover size, defined as the smallest
cardinal of a cover-set H′ such that for every entry h ∈ H,
there exists at least one entry h′ ∈ H′ within ϵ distance from
h.

Based on Lemma 1, Theorem 1 can be proven by contra-
diction as follows.

Proof. First, let the negation of Eq. (1) in Theorem 1 be
assumed to hold:

sup
−(N−1)≤p≤N−1

|f(q,k, p)| <
(
g(N)

2

) 1
2r ϵ

4e
= a (4)

This indicates that the function family H = {f(·, ·, p)|p ∈
Z} maps the input to the range [−a, a]. Without loss of
generality, all values from the range [−a, a] can be shifted
to the range [0, 2a] to apply Lemma 1. Then, according



Prompt 1: A waterfall flows in the mountains under a clear sky

Prompt 2: A waterfall flows in the fall mountains under a clear sky

Prompt 1: There is a beach where there is no one

Prompt 2: The waves hit the deserted beach

Prompt 3: There is a beach that has been swept away by waves

Figure 3. Multi-Prompt Video Generation. Our LongDiff can be easily adapted for multi-prompt video generation by assigning distinct
prompts to each video segment following [9, 10]. As shown, the output of our LongDiff maintains temporal consistency and visual details
across different segments.

to Lemma 11, the ϵ-cover size NP (ϵ,H, df ) of H satisfies
that:

NP (ϵ,H, df ) ≤ 2

(
4ea

ϵ
ln

4ea

ϵ

)r

(5)

By substituting a =
(

g(N)
2

) 1
2r ϵ

4e (defined in Eq. (4)) into
Eq. (5), the following expression is obtained:

NP (ϵ,H, df ) ≤ 2

((
g(N)

2

) 1
2r

ln

(
g(N)

2

) 1
2r

)r

< 2

((
g(N)

2

) 1
2r
(
g(N)

2

) 1
2r

)r

= g(N)

(6)
This indicates that, if the assumption in Eq. (4) holds, the
ϵ-cover size NP (ϵ,H, df ) is smaller than g(N). In other
words, we cannot find g(N) distinct functions in the func-
tion family H = {f(·, ·, p) | p ∈ Z} such that the pairwise
distances (measured by df ) between them are greater than
ϵ. This implies that the number of distinct relative positions
differentiated by the model is less than g(N), which con-
tradicts the definition of g(N). Therefore, Eq. (4) does not
hold, and thus Eq. (1) in Theorem 1 is proven.

Pseudo-Dimension of H. As discussed above, Lemma 1 is
introduced to assist in proving Theorem 1, which requires
that H has a bounded pseudo-dimension dimP (H) = r.
Notably, H = {f(·, ·, p) | p ∈ Z} represents the family of
attention logit functions, whose form varies depending on
the RPE mechanisms. For RoPE, the logit function f(·, ·, p)

1A prerequisite for applying Lemma 1 is that H has a bounded pseudo-
dimension dimP (H) = r (i.e., 1 ≤ r < +∞). It will be shown that H
satisfies this prerequisite later.

can be expressed as a weighted sum of a finite set of sinu-
soidal functions {sin(ωip), cos(ωip)}, where the size of this
set equals the feature dimension k. Based on the properties
of pseudo-dimensions, it follows that dimP (H1 + H2) ≤
dimP (H1)+dimP (H2), and the pseudo-dimension of scal-
ing a single function is at most 2. Therefore, the pseudo-
dimension of the whole family is bounded by dimP (H) ≤
2k, which satisfies the requirement in Lemma 1.
Analysis of Theorem 1. Theorem 1 implies that, the ability
of a video model to distinguish between different relative
positions is constrained by the supremum of the model’s
temporal attention logits. Building on Theorem 1, here,
we further analyze whether existing video models can ac-
curately identify frame order during long video generation.
Recall that for a video model to correctly identify frame
order in a video of length N , it must be capable of distin-
guishing between 2N − 1 distinct relative positions using
its temporal attention logits. According to Theorem 1, this
requirement means that a video model capable of correctly
identifying frame order must satisfy Eq. (1) when g(N) is
set to 2N−1. Conversely, if the inequality in Eq. (1) fails to
hold for g(N) = 2N − 1, it suggests that the supremum of
the temporal attention logits is inadequate for the model to
handle 2N − 1 distinct positions. Consequently, the model
is unable to correctly identify frame order. Based on the
above arguments, here, we perform our analysis taking the
LaVie [14] video model as a case study, and use it to di-
rectly generate 128-frame (i.e., N = 128) videos. Notably,
as shown in Eq. (1), to compute it, we need to determine
the values of r and ϵ. Below, we then first discuss how we
determine the values of r and ϵ for LaVie in our analysis.

Specifically, w.r.t. r, in LaVie, RoPE [12] is employed
as the RPE mechanism, and only 32 dimensions (i.e., k =
32) of the query and key features are processed by RoPE



in each attention head. Additionally, as discussed earlier,
for models using RoPE as the RPE mechanism, r ≤ 2k
(i.e., r ≤ 64). Notably, the right-hand side of Eq. (1) is
negatively correlated with r. Hence, if r = 64 causes the
inequality to fail, then the inequality does not hold for any
r < 64. We then set r = 64 for the subsequent analysis
here.

Meanwhile, to determine the value of ϵ, we first exam-
ine a scenario where these 2N − 1 positions are uniformly
distributed to 2N − 1 groups (given g(N) = 2N − 1). And
the boundaries of these clusters (groups) are precisely situ-
ated in the middle of two adjacent positions. Consequently,
the maximum intra-cluster (group) distance for the cluster
that includes position p can be determined by calculating
df (p − 0.5, p + 0.5). According to the definition in The-
orem 1, ϵ is greater than the maximum intra-cluster dis-
tance (measured by df ) across all position clusters. With
the maximum intra-distance of each group, we can deter-
mine the lower bound of ϵ, denoted as Ω(ϵuni). Notably,
though Ω(ϵuni) is obtained based on the assumption that
these 2N−1 positions are uniformly clustered, for any non-
uniformly distributed scenarios, there must exist at least one
position cluster of larger size with a greater maximum intra-
cluster distance. This means the true lower bound of ϵ is
greater than Ω(ϵuni). Additionally, the right-hand side of
Eq. (1) is positively correlated with ϵ. Hence, if setting ϵ to
Ω(ϵuni) causes the Eq. (1) to fail, then the inequality does
not hold for any ϵ. Thus, we here set ϵ = Ω(ϵuni) for subse-
quent analysis.

After determining the values of r and ϵ, we extract query
and key features from all the temporal attention heads to
compute both the left and right sides of Eq. (1). We find
that when generating 128-frame videos, only query and key
features in 40% of attention heads satisfy the inequality in
Eq. (1), and this percentage decreases to 34% when setting
N = 256. This suggests that the supremum of the tempo-
ral attention logits is insufficient for the model to achieve
g(N) = 2N − 1. In other words, the existing video model
can struggle in identifying correct frame order.

5.2. Detailed Proof of Theorem 2

Here, we provide a detailed proof of Theorem 2. For ease of
reading, we restate Theorem 2 from the main paper below.

Theorem 2. When generating a video with N frames, the
information entropy H of temporal correlations over frames
of the video sequence, is lower bounded by [4]:

H

(
eai

ΣN
j=1e

aj
|1 ≤ i ≤ N

)
≥ lnN − 2B, (7)

where {ai}Ni=1 are the attention logits with boundary
[−B,B].

Proof. The information entropy H of a discrete distribution

P is given as H(P ) = −Σipi ln pi. Hence, the information
entropy of temporal correlation is computed as follows [4]:

H

(
eai

ΣN
j=1e

aj
|1 ≤ i ≤ N

)

= −
∑
i

eai∑
j e

aj
ln

eai∑
j e

aj

= −
∑
i

eai∑
j e

aj

ai − ln
∑
j

eaj


= −

∑
i

eai∑
j e

aj
ai + ln

∑
j

eaj

≥ −max
i

ai + ln(Ne−B)

≥ lnN − 2B

(8)

6. More Experiment Results
6.1. User Study

Following [10], we carried out a user study to assess our
results based on human subjective judgment. In this study,
participants were shown generated long videos using LaVie
as the short video model from all methods (a total of 250
videos), with the examples presented in a random order to
eliminate potential bias. Participants were then asked to
score the generated videos on a scale of 1 to 5 according
to three evaluation criteria: content consistency, video qual-
ity, and video-text alignment. The average scores for each
method are reported in Tab. 8. As shown, our method re-
ceived the highest ratings across all metrics.

Method Content Consistency ↑ Video Quality Video-Text Alignment

Direct 2.8 1.9 2.3
Sliding 1.8 3.1 2.5
FreeNoise [10] 3.3 3.6 3.5
FreeLong [9] 3.7 3.8 3.9

Ours 4.7 4.6 4.7

Table 8. Comparison based on user study.

6.2. Inference Time

Method Inference Time ↓
Direct 4.0s
Sliding 5.4s
FreeNoise [10] 5.4s
FreeLong [9] 4.7s

Ours 5.5s

Table 9. Comparison of infer-
ence time.

In this section, we compare
the inference times (time re-
quired for each denoising
step) of our LongDiff with
other training-free methods
[9, 10] and two basic meth-
ods, Direct and Sliding, on
the NVIDIA A6000 Ada



GPU. We apply all methods to LaVie and generate 128-
frame videos for comparison. As shown in Tab. 9, Our
LongDiff significantly improves the quality of long videos
generated by the short video model and achieves state-of-
the-art results with only a modest increase in inference time
compared to the Direct method.

6.3. Evaluation on Video Models with Absolute Po-
sitional Encoding

Our LongDiff can also be adapted to video models utiliz-
ing absolute positional encoding mechanisms, such as sinu-
soidal position encoding [13]. This is achieved by perform-
ing the GROUP and SHIFT operations directly on the frame
position rather than the relative positions among frames.
Here, we take Animatediff [3], which uses sinusoidal posi-
tion encoding for temporal attention computation, as a case
study to evaluate the efficacy of our LongDiff. Specifically,
we adapt Animatediff to generate 128-frame long videos
with a resolution of 255×255. As shown in Tab. 10, com-
pared to other training-free methods, LongDiff achieves the
best performance across all the metrics.

Method SC ↑ BC ↑ MS ↑ TF ↑ IQ ↑ OC ↑
Direct 92.25 94.35 97.42 96.75 49.27 20.01
Sliding 86.62 92.68 97.86 96.95 60.51 23.42
FreeNoise [10] 95.84 96.75 98.92 98.61 64.69 24.78
FreeLong [9] 95.11 95.86 97.72 98.10 60.23 23.51

Ours 97.54 97.39 98.98 98.70 65.14 25.11

Table 10. Quantitative comparisons of longer video generation
(128 frames) on the Animatediff.
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Prompt: a red panda eating leaves

Direct

Sliding

Ours

FreeLong

FreeNoise

Prompt: a zebra eating grass on the field

Direct

Ours

FreeLong

FreeNoise

Sliding

Figure 4. Qualitative comparisons of long video generation (128 frames) based on VideoCrafter[2]. Compared to our LongDiff, videos
generated by other methods lack temporal consistency to some extent (e.g., zebras that suddenly appear and disappear in the videos
generated from the first prompt; drastic motion changes of the red panda in the videos generated from the second prompt), and suffer
from visual detail issues (e.g., blurred zebra bodies in the videos generated from the first prompt; fuzzy leaves and red pandas in the
videos generated from the second prompt). We illustrate inferior temporal consistency and visual detail issues using red and orange boxes,
respectively.



Prompt: video of yacht sailing in the ocean

Direct

Sliding

Ours

FreeLong

FreeNoise

Prompt: a footage of a frozen river

Direct

Ours

FreeLong

FreeNoise

Sliding

Figure 5. Qualitative comparisons of long video generation (128 frames) based on LaVie[14]. Compared to our LongDiff, videos generated
by other methods lack temporal consistency to some extent (e.g., altered yacht structures in the videos generated from the first prompt;
changing river surfaces and trees that suddenly appear and disappear in the videos generated from the second prompt), and suffer from
visual detail issues (e.g., the fuzzy yacht in the videos generated from the first prompt; the blurred forest in the videos generated from the
second prompt) . We illustrate inferior temporal consistency and the visual detail issues using red and orange boxes, respectively.


