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1. Introduction

In this material, we present details of the experimental set-
tings and qualitative results.

1.1. Experimental Settings
In this section, we will introduce the evaluation metrics and
training details of experiments.

Evaluation metrics: Following [2, 5], two popular met-
rics are employed for quantitative evaluations, i.e., Peak
Signal-to-Noise Ratio (PSNR) [3] and Structure Similarity
(SSIM) [6]. Higher values of them indicate better perfor-
mance of the methods. We calculate PSNR and SSIM on
the Y channel for image super-resolution, and RGB chan-
nel for image denoising, deblurring and dehazing.

Training details: For image super-resolution, we use
64× 64 low-resolution patches for training. The total train-
ing iterations and mini-batch size are 500K and 32, respec-
tively. We adopt Adam as optimizer [4] with β1 = 0.9 and
β2 = 0.99. The learning rate is initialized to 2 × 10−4

and reduce by half at 250K, 400K, 450K, and 450K fol-
lowed [2, 5]. For ×3 and ×4 classic SR, we initialize the
model with weights of ×2 SR, and halve the learning rate
and total training iterations.

For synthetic image denoising, following [2], the patch
size and batch size are set to 128× 128 and 8, respectively.
The training process contains 3200K iterations, with the
Adam optimizer configured to β1 = 0.9 and β2 = 0.99.
The learning rate is initially set to 2 × 10−4 and is halved
at 1600K, 2100K, 2500K, 2800K, and 3000K iterations. To
reduce computational costs, models for σ = 25 and σ = 50
are fine-tuned from the weights of σ = 15, using halved
training iterations.

For deblurring, dehazing and real-world denoising, we
use the AdamW (β1 = 0.9, β2 = 0.999, and weight de-
cay is 1e−4) as optimizer. Our GPUs don’t have enough
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memory to train with large patch sizes. So, we adjust our
training settings to make MaIR train with the same num-
ber of pixels as when using large patches. Notably, for
these tasks, we adopt the U-Net version of MaIR follow-
ing [2], which empirically outperforms plain structures on
above tasks [1, 7]. All Experiments are conducted through
Pytorch on NVIDIA GeForce RTX 3090 GPUs.

1.2. Qualitative Results
In this section, we present the qualitative results of MaIR as
illustrated in Figs. 1 to 4. Taking Fig. 2 as examples, MaIR
can effectively preserve fine textures in the restored images,
yielding results that close to the ground truth. Similarly,
in Fig. 3, MaIR demonstrates its ability to retain intricate
details while minimizing distortion, further highlighting its
robustness and fidelity in image restoration tasks.
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Figure 1. Visual comparison of ×4 image super-resolution results on the Manga109 dataset. MaIR demonstrates superior visual quality,
particularly in preserving fine details and textures.
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Figure 2. Visual comparison of image denoising results on the Urban100 dataset. MaIR effectively removes noise in the images and
produces detailed textures that closely match the ground truth.
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Figure 3. Visual comparison of motion deblurring results on the GoPro dataset. MaIR demonstrates superior performance in effectively
removing motion blur while preserving precise fine details and textures, closely matching the ground truth and avoiding distorations.
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Figure 4. Visual comparison of image dehazing results on the SOTS dataset. MaIR can effectively remove haze and restore contents with
colors that closely match the ground truth.
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