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Supplementary Material

This appendix provides additional details and results that
complement the main paper. We first validate the extensibil-
ity of MANIPTRANS in Appendix A. We then evaluate the
robustness of MANIPTRANS under noisy conditions in Ap-
pendix B and analyze its time cost in Appendix C. Detailed
information on the settings of MANIPTRANS is provided
in Appendix D, along with statistics for the DEXMANIP-
NET dataset in Appendix E. Finally, we present the training
details for the rearrangement policies in Appendix F.

A. Further Extension of MANIPTRANS

A.1. Articulated Object Manipulation

We demonstrate the extensibility of MANIPTRANS by ap-
plying it to the ARCTIC dataset [9], which includes approx-
imately 10 articulated objects, each with precise hand ma-
nipulation trajectories for bimanual single-object manipula-
tion tasks.

To accommodate the articulated object manipulation
task, we extend our method pipeline. For a single articu-
lated object oA, we define its trajectory as T oA = {τ t

oA}Tt=1,
where τ oA = {poA , ṗoA , θoA , θ̇oA} represents the object’s
transformation, velocity, and the angle and angular velocity
of its articulated part. The reward function for articulated
objects, rtobjectA , includes two additional terms compared to
the reward for rigid objects: the angle difference |θoA − θ

ôA |
and the angular velocity difference |θ̇oA − θ̇

ôA |, where ôA

represents the collidable articulated object in the simulation
environment [19]. Apart from this modification, the rest of
the pipeline remains unchanged.

Qualitative results of MANIPTRANS applied to the
ARCTIC dataset are presented in Fig. 1, demonstrating
that our method successfully imitates human demonstra-
tions and rotates the articulated object to the desired target
angle. This highlights the extensibility of our pipeline when
the physical properties of the articulated object can be ac-
curately modeled in simulation.

A.2. Challenging Hand Embodiments

We investigate the generalization capabilities of MANIP-
TRANS across different hand embodiments in the main pa-
per. Here, we provide further details on adapting MANIP-
TRANS to a challenging hand model: the Allegro Hand [2],
which possesses K = 16 degrees of freedom. The chal-
lenges encountered stem from two primary factors: 1) the
Allegro Hand has only four fingers, a significant devia-
tion from the structure of the human hand, and 2) the Al-
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Figure 1. Applying MANIPTRANS to Articulated Object Ma-
nipulation. In the first row, the two hands collaborate to not only
close the book but also place it stably on the table.
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Figure 2. Extending MANIPTRANS to the Allegro Hand. De-
spite the Allegro Hand having only four fingers and a significantly
larger size, the transferred motion remains stable and natural.

legro Hand is approximately twice the size of a human
hand. These morphological discrepancies present substan-
tial challenges in transferring human demonstrations to the
Allegro Hand.

To address these challenges, we adaptively modify the
fingertip mapping relationships, mapping both the pinky
and ring fingers to the same fingertip on the Allegro Hand.
Additionally, we relax the fingertip keypoint threshold ϵfinger
to 8 cm to accommodate the larger dimensions of the Alle-
gro Hand. Successful application of MANIPTRANS to the
Allegro Hand is demonstrated in Fig. 2.

A.3. Discussion on the Extension

To summarize, we present all settings for the extension
experiments in Tab. 1. The green checkmark (✓) indi-
cates the successful transfer of the dataset to the specified
hand embodiment, with results included in DEXMANIP-
NET. The blue checkmark (✓) denotes dataset verifica-
tion, where MANIPTRANS is tested on only a subset of the
dataset to assess generalizability. The results demonstrate
that our pipeline effectively accommodates various morpho-
logical differences across hand embodiments and supports a



Hands
Datasets

FAVOR [16] OakInk-V2 [26] GRAB [23] ARCTIC [9]

Inspire [3] ✓ ✓ ✓ ✓
Shadow [1] ✓ ✓ ✓ ✓

Arti-MANO [21] ✓ ✓ ✓ ✓
Allegro [2] ✓ ✓ ✓ ✓

Table 1. Extensibility of MANIPTRANS. Arti-MANO refers to
the articulated MANO hand used in [8].

wide range of tasks, including single-hand manipulation, bi-
manual articulated object manipulation, and bimanual two-
object manipulation.

As discussed in Sec. 3.4 of the main paper, FAVOR [16]
and OakInk-V2 [26] represent the largest datasets with the
most diverse task types, while the Inspire Hand is distin-
guished by its high dexterity, stability, cost-effectiveness,
and extensive prior use [6, 11, 14]. Consequently, this
setup was chosen for collecting DEXMANIPNET. How-
ever, MANIPTRANS is fully adaptable, and we demonstrate
that all of the aforementioned MoCap datasets can be trans-
ferred to other robotic hands. We welcome further collabo-
ration from the research community.

B. Robustness Evaluation

MoCap data and model-based pose estimation results often
contain noise. To assess whether MANIPTRANS can reli-
ably transfer noisy real-world data into stable robotic mo-
tions within a simulation environment, we conduct robust-
ness tests. Since MANIPTRANS is designed for general-
purpose transfer and does not depend on task-specific re-
ward functions (e.g., the twisting reward proposed in [18]
for the lip-twisting task), noisy object trajectories may in-
troduce instability during the rollout process. Thus, to eval-
uate MANIPTRANS’s performance under such conditions,
we introduce random Gaussian noise into the hand trajec-
tory input and focus on single-hand manipulation tasks.
This choice is motivated by the fact that most hand pose es-
timation methods [17, 24, 25] are optimized for single-hand
scenarios.

The results, presented in Tab. 2, demonstrate that MA-
NIPTRANS maintains acceptable performance even when
the noise level reaches up to 1.5 cm. These findings high-
light the potential of MANIPTRANS for real-world scaling,
particularly in applications involving hand pose estimation

Noise Er ↓ Et ↓ Ej ↓ Eft ↓ SR ↑
+ σ = 0.5 cm 9.15 0.51 2.40 1.66 55.1 / 30.1
+ σ = 1.0 cm 9.56 0.57 2.87 2.13 55.3 / 19.5
+ σ = 1.5 cm 9.65 0.69 3.29 2.69 46.7 / 39.2

Table 2. Quantitative Results Under Different Noise Levels. We
add the Gaussian noise N (0, σ2) to the target hand joints poses.
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Figure 3. Detailed Efficiency Comparison. The success rate
curves for the “rotating a mouse” task.

from web video data, which may implicitly contain a vast
array of dexterous manipulation skills.

C. Time Cost Analysis
In Sec. 4.3 of the main paper, we compare the efficiency
of our method with the previous SOTA method, QuasiSim.
QuasiSim employs a set of quasi-physical simulations, di-
viding the transfer process into three primary stages, with
each stage requiring approximately 10-20 hours for a 60-
frame trajectory 1. Since MANIPTRANS also follows a
multi-stage framework, incorporating both a pre-trained
hand imitation module and a residual refinement module
tailored to physical dynamics, we provide a more compre-
hensive comparison of efficiency.

For a fair evaluation, we use the official QuasiSim demo
data for the “rotating a mouse” task as a representative ex-
ample. The success rate curves for three different settings,
as discussed in Sec. 4.3 of the main paper, are shown in
Fig. 3: 1) RL-Only: This approach trains the policy net-
work from scratch using RL with our reward design. The
curve illustrates the entire training process. 2) Retarget +
Residual Learning: Inspired by [27], this method retargets
human hand poses to initial dexterous hand poses via key-
point alignment [20], followed by residual learning for re-
finement. The retargeting process is performed via parallel
optimization and only requires approximately several min-
utes on a single GPU to optimize full sequence. The training
curve for the residual learning stage is represented by the
orange line. 3) MANIPTRANS: We pre-train the hand im-
itation model on a large-scale training dataset, as described
in Sec. 3.2, which takes approximately 1.5 days on a single
GPU to obtain the reusable imitator. The residual learning
stage training curve is shown by the blue line.

From the results in Fig. 3, we observe that for the rel-
atively simple task of “rotating a mouse”, the Retarget +
Residual method achieves performance comparable to MA-
NIPTRANS but requires slightly more time to converge.
The RL-Only approach, while yielding suboptimal perfor-
mance compared to the other methods, still produces ac-

1As reported in the official repository: https://github.com/
Meowuu7/QuasiSim



ceptable motions within 20 minutes. This indicates that our
reward design effectively accelerates the training process,
facilitating faster convergence.

D. Details of MANIPTRANS Settings

D.1. Correspondence Between Human Hand and
Dexterous Hand

Due to the significant morphological differences between
human hands and dexterous robotic hands, we manually
establish correspondences between them. For the human
hand’s fingertip keypoints, we select the midpoint of the
three tip anchors as defined in [25]. For the dexterous hands,
given their varying shapes, we define the fingertip keypoints
as the points of maximum curvature along the central axis
of the finger pads, as these points are most likely to contact
objects. For other keypoints, such as the wrist and pha-
langes, we intuitively align the rotation axes of the human
joints with those of the robotic joints. For further details,
please refer to our code implementation.

In addition, regarding the articulated MANO model, the
original human hand model MANO [21] has 45-DoF, which
presents extreme challenges for RL-based policies due to
the vast exploration space. To mitigate this, we follow the
approach in [25] by constraining certain DoFs and fixing
the hand collision meshes, thereby reducing the original
MANO model to a 22-DoF articulated MANO.

D.2. Details of Training Parameters

In this section, we present the core parameters of our re-
ward functions in MANIPTRANS. The reward parameters
for rtfinger in Eq. (1) of the main paper are summarized in
Tab. 3. These parameters are determined based on the ob-
servation that the thumb, index, and middle fingers play a
pivotal role in grasping and manipulation tasks, as they sta-
tistically interact with objects more frequently than other
fingers [4, 5, 26]. Consequently, the weights are assigned
according to the contact frequency. In our implementation,
if a dexterous hand lacks a specific finger or joint (e.g., the
Inspire Hand does not have distal joints), the corresponding

Figners weight wf decay rate λf

Thumb 0.5, 0.3, 0.3, 0.9 50, 40, 40, 100
Index 0.5, 0.3,0.3, 0.8 50, 40, 40, 90

Middle 0.5, 0.3,0.3, 0.75 50, 40, 40, 80
Ring 0.5, 0.3,0.3, 0.6 50, 40, 40, 60
Pinky 0.5, 0.3,0.3, 0.6 50,40, 40, 60

Table 3. Hyperparameters for the Finger Reward. The weight
wf and decay rate λf are used to balance the importance of each
finger. Each cell in the table contains four values, representing the
parameters for the proximal, intermediate, distal, and tip joints,
respectively. For anatomical definitions, please refer to [25].

parameters are set to zero. For the contact reward rtcontact in
Eq. (2) of the main paper, we set both parameters, wc and
λc, to 1.

D.3. Details of Simulation Parameters

In the Isaac Gym environment, configuring physical prop-
erties significantly influences the success rate of transfer.
Alongside domain randomization (DR) during training, we
set physical constants as follows. For certain objects in
OakInk-V2 [26], we obtained actual masses by directly
measuring them in collaboration with the dataset authors.
For the remaining objects, we assigned a constant density of
200 kg/m3, approximating the average density of low-fill-
rate 3D-printed models. Using this density, we recalculated
the objects’ masses and moments of inertia.

It is worth noting that human skin is elastic. When grasp-
ing objects, fingertip skin undergoes slight deformations,
enhancing contact with object surfaces and generating suit-
able friction, whereas dexterous robotic hands lack this be-
havior. Previous kinematics-based grasp generation meth-
ods [13, 15] often permit slight penetration between finger-
tips and object surfaces to improve interaction stability (for
detailed discussion, please refer to [13]). Therefore, to com-
pensate for the absence of skin deformation in simulation,
we set the friction coefficient F slightly higher than the real-
world value. Accurately simulating contact-rich scenarios
remains an area for future exploration.

E. DEXMANIPNET Statistics
To the best of our knowledge, no prior work has collected a
large-scale bimanual manipulation dataset in which all tra-

assemble, brush whiteboard, cap, cap the pen,
close book, close gate, close laptop lid,
cut, flip close tooth paste cap,
flip open tooth paste cap, heat beaker, heat test
tube, hold, hold test tube, ignite alcohol lamp,
insert lightbulb, insert pencil, insert usb,
open gate, open laptop lid, place asbestos mesh,
place inside, place on test tube rack, place
onto, place test tube on rack with holder,
plug in power plug, pour, pour in lab,
press button, put flower into vase,
put off alcohol lamp, put on lid, rearrange,
remove from test tube rack, remove lid,
remove pencil, remove power plug,
remove test tube, remove test tube from
rack with holder, remove the pen cap,
remove usb, scoop, scrape, screw, shake
lab container, sharpen pencil, shear paper,
spread, squeeze tooth paste, stir,
stir experiment substances, swap, take outside,
trigger lever, uncap, uncap alcohol lamp,
unscrew, use mouse, wipe, write on paper,
write on whiteboard

Table 4. List of tasks in the DEXMANIPNET dataset. Tasks with
underlined names usually require bimanual manipulation.



Figure 4. Qualitative Results of Rearrangement Policy Learn-
ing. The policy successfully moves the bottle to the goal position.
Results are directly visualized in the IsaacGym environment, high-
lighting distinctions between these policies and MANIPTRANS’s
rollouts.

jectories are directly transferred from real human demon-
strations without the use of teleportation. Leveraging the ef-
ficiency and precision of MANIPTRANS, our dataset, DEX-
MANIPNET, comprises 3.3K diverse manipulation trajec-
tories across 61 distinct tasks, as detailed in Tab. 4. To en-
sure stability during simulation, we fix the object meshes to
a watertight state using ManifoldPlus [12] and may slightly
adjust the object size to enhance object-object interactions
(e.g., the cap and body of the bottle).

Additionally, we provide sample data on our website,
showcasing trajectories generated from our policy in sim-
ulation. A simple first-order low-pass filter (α = 0.4) is
applied to the rollouts, effectively reducing jitter with mini-
mal impact on tracking accuracy.

F. Details of Rearrangement Policy Learning
As discussed in Sec. 4.7 of the main paper, we benchmark
DEXMANIPNET using four data-driven imitation learning
methods on the moving a bottle to a goal position task.

The primary challenge in this task is to enable the dex-
terous hand to maintain a stable grasp on the object while
smoothly placing it at the specified goal position. We eval-
uate the dataset using four methods: IBC [10], BET [22],
and Diffusion Policy [7], which include both UNet- and
Transformer-based architectures. These policies are trained
for 500 epochs using the Adam optimizer with a learning
rate of 1× 10−4, while all other hyperparameters remain at
their default settings.

The dimensions of the observation and action spaces for
these policies are provided in Tab. 5. The observation space
includes the current object state {pô, ṗô}, the hand wrist

state {wd, ẇd}, hand joint angles qd, and the goal poses
for both the object gô and the hand wrist gw. The action
a = {aq,aw} ∈ A specifies the target hand joint angles
and wrist poses using a PD controller. Note that PD control
is used for wrist poses rather than a 6-DoF force, as is done
in MANIPTRANS.

We evaluate the policies’ performance on previously un-
seen goal positions within the IsaacGym environment [19].
A rollout is considered successful if the object’s distance
from the goal position is within 10 cm; otherwise, it is clas-
sified as a failure. Qualitative results are presented in Fig. 4,
while quantitative results are summarized in Tab. 2 of the
main paper.

Observation Dimensions

Hand joint angles q 12
Hand wrist state {wd, ẇd} 13

Object state {pô, ṗô} 13
Object pose goal gô 7

Hand wrist pose goal gw 7

(a) Observation space.

Action Dimensions

Hand joint angles aq 12
Hand wrist pose aw 7

(b) Action space.

Table 5. Observation and Action Definitions for the Imitation
Policy. The policy’s 7-dimensional pose includes both position
and orientation, represented as XYZW quaternions. The policy’s
13-dimensional state extends this pose by incorporating both linear
and angular velocities.
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