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1. Implementation Details
1.1. System Overview

Figure 2 shows an overview of our MegaSaM system. We
separate the problem of camera and scene structure estima-
tion into two stages, in the spirit of a conventional SfM
pipeline [5, 6]. In particular, we first estimate camera poses
G, focal length f and low-resolution disparity d from the
input monocular video through differentiable Bundle Adjust-
ment (BA), where we initialize d with monocular depth maps
predicted from off-the-shelf models [4, 9]. In the second
consistent video depth estimation phase, we fix estimated
camera parameters and perform first-order optimization over
video depth and uncertainty maps by enforcing flow and
depth losses induced by pairwise 2D optical flows.

1.2. Framework and Architecture

We follow DROID-SLAM [7] for feature extraction, correla-
tion feature construction, and perform iterative BA updates
through flow, confidence, motion probability predictions.
Each input to the model is a pair of video frames (I;, I;).

Feature extraction. We use context and feature encoders
to encode each input video frame into two different low-
resolution feature maps at é resolution of the input image,
as shown in Figure 4.

Correlation feature construction. The correlation layer
constructs a 4D correlation volume from the features en-
coded from an image pair, and each entry of the volume
contains inner product of one pairs of feature vectors from
the image pair.

Iterative updates. During each iterative BA step &, we up-
date camera parameters and low-resolution disparity through
flow, confidence and motion probability prediction. In partic-
ular, we first pretrain F' on synthetic video data (ego-motion
pretraining in the main paper) to learn to predict flows and
corresponding flow confidence, as shown by the gray blocks
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in Figure 3. In the second dynamic finetuning phase, we
freeze the parameters of F' and finetune the motion module
F,, to predict extra object motion probability maps condi-
tioned on the features from the ConvRGU, as shown in the
blue blocks in Figure 3. Note that in practice, we predict ob-
ject motion map per frame pair since we found that it works
slightly better than predicting per-frame motion map. Within
the motion module, we first perform 2D spatial average pool-
ing to provide the model with global spatial information; we
then perform average pooling along the time axis to fuse
information from I; and all its neighboring keyframes I;
(where j € N (i)).

1.3. Consistent Video Depth Optimization

Recall, from Section 3.3 of our main paper, that we fol-
low CasualSAM [11] to estimate consistent video depth by
performing an additional first-order optimization on video
disparity D; along with per-frame aleatoric uncertainty maps
M;. Instead of jointly optimizing camera parameters and
scene structure as in CasualSAM, however, we fix cam-
era parameters as done in conventional SfM pipelines like
COLMAP [5, 6].
Our objective consists of three main cost functions:

Ccvd = wﬂnwcﬂow + wtempctemp + wpriorcprior (1)

We treat object motion in the video as the heteroscedas-
tic aleatoric uncertainty of the flow reprojection and depth
consistency error [2], and assume the underlying noise is
Laplacian [10]. Specifically, for each selected pair (I;, I;),
flow reprojection loss Cpow compares [; loss weighted by the
uncertainty Mi between flows flow;_, ; from an off-the-shelf
flow estimator [7] and the correspondences u;; induced by
our estimated camera motion and disparity through a multi-
view constraint:
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Figure 1. Limitations. We visualize three reference video frames on the left and their corresponding estimated camera paths and
reconstruction on the right. Our method can lose tracks in cases where a moving object dominates the entire videos (top row). Our approach
can also struggle in cases where object motion and camera motion are colinear, such as the selfie video in the bottom row.
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Figure 2. System overview. Left: we estimate camera poses, focal length and low-resolution disparity maps from the input monocular video
through differentiable Bundle Adjustment (BA): the network iteratively updates these state variables by learning to predict low-resolution
flow 11,5, confidence, and movement probability maps w;; and minimize weighted reprojection error between predicted flow 1;; and flow
induced by ego-motion u;;. We also initialize estimated disparity with mono-depth predicted from off-the-shelf models [4, 9]. Right: we fix
estimated camera parameters and perform first-order global optimization over video depth and corresponding uncertainty parameters by

minimizing flow and depth losses through pairwise 2D optical flows.

Ciemp 18 an uncertainty weighted temporal depth loss that
encourages pixel disparity to be temporally consistent ac-
cording to estimated 2D optical flow:
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R,;_,; and t;_,; are relative camera rotation and translation
between I; and I;; 2] is an operator that retrieve the third
component of the 3D point vector (i.e. z value).

Cprior is a depth prior loss that stops the final estimated
video disparity from drifting too much from the initial esti-
mate from the mono-depth network, and it consists of three

losses:

(&)

The scale-invariant depth loss Cs; computes the mean
square error of the difference among all pairs between opti-
mized log-disparity log D; and initial log-disparity from the
metric-aligned mono-depth prediction log D",

Cprior = Csi + wgradcgrad + wnormalcnormal

Ci= 1S (RO~ 5 | S Rp)
(p) (p)

R; = log(D;) — log (D). (6)

Cyrad is @ multi-scale scale-invariant gradient matching
term [3], which computes [; difference between estimated
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Figure 3. Architecture of flow, confidence and movement map predictor. The gray blocks belong to the network F' for flow and confidence
prediction, and the blue blocks belong to the network F},, for object movement map prediction. In the first stage, we perform ego-motion
pretraining for F'. In the second stage, we perform dynamic fine-tuning for F},, while fixing the parameters of F'.
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Figure 4. Architecture of the feature and context encoders. Both
encoders extract low-resolution features from input video frames at
é of the original resolution.

log disparity gradients and initial log-disparity gradients
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where R®(p) is log-depth difference map at pixel position p
and scale s. In other words, we only apply multi-scale gradi-
ent matching loss to pixels where the current estimated dis-
parity deviates significantly from the original mono-depth.
Chormal 18 @ surface normal loss that encourages that nor-
mal N(p) derived from estimated disparity to be close to the
surface normal N#i€" derived from the initial metric-aligned

monocular disparity:

Cnormal = Zl - N(p) ! Nalign(p) (8)
o

We set Werad = 1, Wnormat = 4,8v = 5 throughout
our experiments. We simply choose image pairs (I;, I;)
from a set of fixed intervals following prior work [11]:
je(i+1,i+2,i+4,i+ 8,7+ 15). During optimization,
we initialize the disparity variables from the metric-aligned
monocular depth by combining estimates from off-the-shelf
modules as described in the main paper [4, 9], and we initial-
ize the uncertainty map with object motion probability maps
predicted from our camera tracking module. The optimiza-
tion first conducts a “warm-up” phase for 100 steps by fixing
the video disparity variables and optimizing the per-frame
uncertainty map, per-frame scale, shift variables using the
aforementioned losses. The disparity maps and uncertainty
maps are then optimized together under the aforementioned
losses for another 400 steps.

1.4. Additional Details

Training Losses. We supervise our network using a combi-
nation of pose loss and flow loss. The flow loss is applied
to pairs of adjacent frames. We compute the optical flow in-
duced by the predicted depth and poses and the flow induced
by the ground truth depth and poses. The loss is taken to be
the average 12 distance between the two flow fields.

Given a set of ground truth poses {T;}, and pre-
dicted poses {G;},, the pose loss is taken to be the
distance between the ground truth and predicted poses,
Lpose =Y, ||L0§:{SE(3)(T;1 - G;)||2. We apply the losses
to the output of every BA iteration with exponentially in-
creasing weight using v = 0.9%, where k indicates the k%"



BA iterations.

Training and Inference Details In our two-stage training
scheme, we first pretrain our model on synthetic data of
static scenes, which include 163 scenes from TartanAir [8]
and 5K videos from static Kubric [1]. In the second stage,
we finetune motion module F),, on 11K dynamic videos
from Kubric [1]. Each training example consists of a 7-
frame video sequence. We first precompute a distance ma-
trix between each pair of video frame based on the average
ego-motion induced flow magnitude. We then dynamically
generate a training sequence according to the constructed
distance matrix, we randomly sample each frame such that
average flow between them is between 0.5px and 64px.

Within the camera tracking module, we normalize video
disparity d such that its 98 percentile is 2; we also normalize
focal length by dividing it by the input image resolution
within every the bundle adjustment stage.

2. Limitations

Despite excellent performance on a variety of in-the-wild
videos, we observe that our approach can fail in ex-
tremely challenging scenarios, similar to findings from prior
work [11]. For instance, camera tracking fails if moving
objects dominate the entire image or if there is nothing for
the system to track reliably, as shown in the first row of
Fig. 1. Furthermore, our approach also struggles on dynamic
videos where camera motion and object motion are colinear,
as shown in the second row of Fig. 1.
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