
Supplementary Material
MegaSaM: Accurate, Fast and Robust Structure and Motion from Casual

Dynamic Videos

Zhengqi Li1, Richard Tucker1, Forrester Cole1, Qianqian Wang1,2, Linyi Jin1,3

Vickie Ye2, Angjoo Kanazawa2, Aleksander Holynski1,2, Noah Snavely1

1Google DeepMind 2UC Berkeley 3University of Michigan

1. Implementation Details
1.1. System Overview

Figure 2 shows an overview of our MegaSaM system. We
separate the problem of camera and scene structure estima-
tion into two stages, in the spirit of a conventional SfM
pipeline [5, 6]. In particular, we first estimate camera poses
Ĝ, focal length f̂ and low-resolution disparity d̂ from the
input monocular video through differentiable Bundle Adjust-
ment (BA), where we initialize d̂ with monocular depth maps
predicted from off-the-shelf models [4, 9]. In the second
consistent video depth estimation phase, we fix estimated
camera parameters and perform first-order optimization over
video depth and uncertainty maps by enforcing flow and
depth losses induced by pairwise 2D optical flows.

1.2. Framework and Architecture

We follow DROID-SLAM [7] for feature extraction, correla-
tion feature construction, and perform iterative BA updates
through flow, confidence, motion probability predictions.
Each input to the model is a pair of video frames (Ii, Ij).

Feature extraction. We use context and feature encoders
to encode each input video frame into two different low-
resolution feature maps at 1

8 resolution of the input image,
as shown in Figure 4.

Correlation feature construction. The correlation layer
constructs a 4D correlation volume from the features en-
coded from an image pair, and each entry of the volume
contains inner product of one pairs of feature vectors from
the image pair.

Iterative updates. During each iterative BA step k, we up-
date camera parameters and low-resolution disparity through
flow, confidence and motion probability prediction. In partic-
ular, we first pretrain F on synthetic video data (ego-motion
pretraining in the main paper) to learn to predict flows and
corresponding flow confidence, as shown by the gray blocks

in Figure 3. In the second dynamic finetuning phase, we
freeze the parameters of F and finetune the motion module
Fm to predict extra object motion probability maps condi-
tioned on the features from the ConvRGU, as shown in the
blue blocks in Figure 3. Note that in practice, we predict ob-
ject motion map per frame pair since we found that it works
slightly better than predicting per-frame motion map. Within
the motion module, we first perform 2D spatial average pool-
ing to provide the model with global spatial information; we
then perform average pooling along the time axis to fuse
information from Ii and all its neighboring keyframes Ij
(where j ∈ N (i)).

1.3. Consistent Video Depth Optimization

Recall, from Section 3.3 of our main paper, that we fol-
low CasualSAM [11] to estimate consistent video depth by
performing an additional first-order optimization on video
disparity D̂i along with per-frame aleatoric uncertainty maps
M̂i. Instead of jointly optimizing camera parameters and
scene structure as in CasualSAM, however, we fix cam-
era parameters as done in conventional SfM pipelines like
COLMAP [5, 6].

Our objective consists of three main cost functions:

Ccvd = wflowCflow + wtempCtemp + wpriorCprior (1)

We treat object motion in the video as the heteroscedas-
tic aleatoric uncertainty of the flow reprojection and depth
consistency error [2], and assume the underlying noise is
Laplacian [10]. Specifically, for each selected pair (Ii, Ij),
flow reprojection loss Cflow compares l1 loss weighted by the
uncertainty M̂i between flows flowi→j from an off-the-shelf
flow estimator [7] and the correspondences uij induced by
our estimated camera motion and disparity through a multi-
view constraint:

Ci→j
flow = M̂i||uij − pi,flowi→j(pi)||1 + log

(
1

M̂i

)
, (2)

uij = π
(
Ĝij ◦ π−1(pi, D̂i,K

−1),K
)

(3)

1

Figure 1. Limitations. We visualize three reference video frames on the left and their corresponding estimated camera paths and
reconstruction on the right. Our method can lose tracks in cases where a moving object dominates the entire videos (top row). Our approach
can also struggle in cases where object motion and camera motion are colinear, such as the selfie video in the bottom row.

…
…

…

Differentiable
BA

CVD

Camera Tracking Consistent Video Depth

Depth

Uncertainty

Flows

Update

Input video

Figure 2. System overview. Left: we estimate camera poses, focal length and low-resolution disparity maps from the input monocular video
through differentiable Bundle Adjustment (BA): the network iteratively updates these state variables by learning to predict low-resolution
flow ûij , confidence, and movement probability maps wij and minimize weighted reprojection error between predicted flow ûij and flow
induced by ego-motion uij . We also initialize estimated disparity with mono-depth predicted from off-the-shelf models [4, 9]. Right: we fix
estimated camera parameters and perform first-order global optimization over video depth and corresponding uncertainty parameters by
minimizing flow and depth losses through pairwise 2D optical flows.

Ctemp is an uncertainty weighted temporal depth loss that
encourages pixel disparity to be temporally consistent ac-
cording to estimated 2D optical flow:

Ci→j
temp = M̂iδ

(
Pi→j

z , D̂j(p+ flowi→j(p))
)
+ log

(
1

M̂i

)
δ(a, b) = ||max(

a

b
,
b

a
)||1

Pi→j
z =

(
Di(p)Ri→jK

−1p+ ti→j

)
[z]

(4)

Ri→j and ti→j are relative camera rotation and translation
between Ii and Ij ; [z] is an operator that retrieve the third
component of the 3D point vector (i.e. z value).

Cprior is a depth prior loss that stops the final estimated
video disparity from drifting too much from the initial esti-
mate from the mono-depth network, and it consists of three

losses:

Cprior = Csi + wgradCgrad + wnormalCnormal (5)

The scale-invariant depth loss Csi computes the mean
square error of the difference among all pairs between opti-
mized log-disparity log D̂i and initial log-disparity from the
metric-aligned mono-depth prediction logDalign

i .

Csi =
1

n

∑
(p)

(R(p))2 − 1

n2

∑
(p)

R(p)

2

Ri = log(D̂i)− log(Dalign
i). (6)

Cgrad is a multi-scale scale-invariant gradient matching
term [3], which computes l1 difference between estimated

C
o

n
v

3
x

3
 (6

4
)

Context

Feature

Correlation

Feature

Flow at

step k

C
o

n
v

3
x

3
 (6

4
)

C
o
n

v
3

x
3
 (6

4
)

C
o
n

v
3

x
3
 (6

4
)

C
o

n
v

G
R

U
 3

x
3

 (1
2

8
)

C
o

n
v

3
x

3
 (1

2
8
)

C
o
n

v
3

x
3
 (2

)

C
o

n
v

3
x

3
 (1

2
8
)

C
o

n
v

3
x

3
 (2

)

Flow at

step k+1

Confidence at

step k +1

C
o

n
v

3
x

3
 (1

2
8

)

C
o

n
v

3
x

3
 (1

2
8

)

C
o

n
v

3
x

3
 (1

2
8

)

Spatial
Pool

Temporal
Pool

C
o

n
v

3
x

3
 (1

2
8

)

C
o

n
v

3
x

3
 (1

2
8

)

C
o

n
v

3
x

3
 (1

)

Movement map at

step k +1

Hidden state at

step k

Figure 3. Architecture of flow, confidence and movement map predictor. The gray blocks belong to the network F for flow and confidence
prediction, and the blue blocks belong to the network Fm for object movement map prediction. In the first stage, we perform ego-motion
pretraining for F . In the second stage, we perform dynamic fine-tuning for Fm while fixing the parameters of F .

C
o
n
v
7
x
7
 (6

4
)

R
esB

lo
ck

 (6
4
)

R
esB

lo
ck

 (1
2
8
)

R
esB

lo
ck

 (1
2
8
)

R
esB

lo
ck

 (2
5
6
)

R
esB

lo
ck

(2
5
6
)

R
esB

lo
ck

(2
5
6
)

C
o
n
v
3
x
3

(2
5

6
)

Figure 4. Architecture of the feature and context encoders. Both
encoders extract low-resolution features from input video frames at
1
8

of the original resolution.

log disparity gradients and initial log-disparity gradients

Cgrad =
1

n

∑
s

ws
∇(p)

∑
p

(|∇xR
s(p)|+ |∇yR

s(p)|)

ws
∇(p) = 1− exp (−β∇(∇xR

s(p) +∇yR
s(p))) (7)

where Rs(p) is log-depth difference map at pixel position p
and scale s. In other words, we only apply multi-scale gradi-
ent matching loss to pixels where the current estimated dis-
parity deviates significantly from the original mono-depth.

Cnormal is a surface normal loss that encourages that nor-
mal N̂(p) derived from estimated disparity to be close to the
surface normal Nalign derived from the initial metric-aligned

monocular disparity:

Cnormal =
∑
p

1− N̂(p) ·Nalign(p) (8)

We set wgrad = 1, wnormal = 4, β∇ = 5 throughout
our experiments. We simply choose image pairs (Ii, Ij)
from a set of fixed intervals following prior work [11]:
j ∈ (i+ 1, i+ 2, i+ 4, i+ 8, i+ 15). During optimization,
we initialize the disparity variables from the metric-aligned
monocular depth by combining estimates from off-the-shelf
modules as described in the main paper [4, 9], and we initial-
ize the uncertainty map with object motion probability maps
predicted from our camera tracking module. The optimiza-
tion first conducts a “warm-up” phase for 100 steps by fixing
the video disparity variables and optimizing the per-frame
uncertainty map, per-frame scale, shift variables using the
aforementioned losses. The disparity maps and uncertainty
maps are then optimized together under the aforementioned
losses for another 400 steps.

1.4. Additional Details

Training Losses. We supervise our network using a combi-
nation of pose loss and flow loss. The flow loss is applied
to pairs of adjacent frames. We compute the optical flow in-
duced by the predicted depth and poses and the flow induced
by the ground truth depth and poses. The loss is taken to be
the average l2 distance between the two flow fields.

Given a set of ground truth poses {Ti}Ni=1 and pre-
dicted poses {Gi}Ni=1, the pose loss is taken to be the
distance between the ground truth and predicted poses,
Lpose =

∑
i ||LogSE(3)(T

−1
i ·Gi)||2. We apply the losses

to the output of every BA iteration with exponentially in-
creasing weight using γ = 0.9k, where k indicates the kth

BA iterations.

Training and Inference Details In our two-stage training
scheme, we first pretrain our model on synthetic data of
static scenes, which include 163 scenes from TartanAir [8]
and 5K videos from static Kubric [1]. In the second stage,
we finetune motion module Fm on 11K dynamic videos
from Kubric [1]. Each training example consists of a 7-
frame video sequence. We first precompute a distance ma-
trix between each pair of video frame based on the average
ego-motion induced flow magnitude. We then dynamically
generate a training sequence according to the constructed
distance matrix, we randomly sample each frame such that
average flow between them is between 0.5px and 64px.

Within the camera tracking module, we normalize video
disparity d̂ such that its 98 percentile is 2; we also normalize
focal length by dividing it by the input image resolution
within every the bundle adjustment stage.

2. Limitations
Despite excellent performance on a variety of in-the-wild
videos, we observe that our approach can fail in ex-
tremely challenging scenarios, similar to findings from prior
work [11]. For instance, camera tracking fails if moving
objects dominate the entire image or if there is nothing for
the system to track reliably, as shown in the first row of
Fig. 1. Furthermore, our approach also struggles on dynamic
videos where camera motion and object motion are colinear,
as shown in the second row of Fig. 1.

References
[1] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch,

Yilun Du, Daniel Duckworth, David J Fleet, Dan Gnanapra-
gasam, Florian Golemo, Charles Herrmann, Thomas Kipf, Ab-
hijit Kundu, Dmitry Lagun, Issam Laradji, Hsueh-Ti (Derek)
Liu, Henning Meyer, Yishu Miao, Derek Nowrouzezahrai,
Cengiz Oztireli, Etienne Pot, Noha Radwan, Daniel Rebain,
Sara Sabour, Mehdi S. M. Sajjadi, Matan Sela, Vincent Sitz-
mann, Austin Stone, Deqing Sun, Suhani Vora, Ziyu Wang,
Tianhao Wu, Kwang Moo Yi, Fangcheng Zhong, and Andrea
Tagliasacchi. Kubric: a scalable dataset generator. 2022. 4

[2] Alex Kendall and Yarin Gal. What uncertainties do we need
in bayesian deep learning for computer vision? Advances in
neural information processing systems, 30, 2017. 1

[3] Zhengqi Li and Noah Snavely. Megadepth: Learning single-
view depth prediction from internet photos. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 2041–2050, 2018. 2

[4] Luigi Piccinelli, Yung-Hsu Yang, Christos Sakaridis, Mattia
Segu, Siyuan Li, Luc Van Gool, and Fisher Yu. UniDepth:
Universal monocular metric depth estimation. In Proc. Com-
puter Vision and Pattern Recognition (CVPR), 2024. 1, 2,
3

[5] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pages 4104–
4113, 2016. 1

[6] Johannes L Schönberger, Enliang Zheng, Jan-Michael Frahm,
and Marc Pollefeys. Pixelwise view selection for unstructured
multi-view stereo. In Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, Octo-
ber 11-14, 2016, Proceedings, Part III 14, pages 501–518.
Springer, 2016. 1

[7] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part II 16, pages 402–419. Springer, 2020.
1

[8] Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu,
Yuheng Qiu, Chen Wang, Yafei Hu, Ashish Kapoor, and
Sebastian Scherer. Tartanair: A dataset to push the limits of
visual slam. 2020. 4

[9] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi
Feng, and Hengshuang Zhao. Depth anything: Unleashing
the power of large-scale unlabeled data. In CVPR, 2024. 1, 2,
3

[10] Nan Yang, Lukas von Stumberg, Rui Wang, and Daniel Cre-
mers. D3vo: Deep depth, deep pose and deep uncertainty for
monocular visual odometry. In Proc. Computer Vision and
Pattern Recognition (CVPR), pages 1281–1292, 2020. 1

[11] Zhoutong Zhang, Forrester Cole, Zhengqi Li, Michael Ru-
binstein, Noah Snavely, and William T Freeman. Structure
and motion from casual videos. In Proc. European Conf. on
Computer Vision (ECCV), 2022. 1, 3, 4

	. Implementation Details
	. System Overview
	. Framework and Architecture
	. Consistent Video Depth Optimization
	. Additional Details

	. Limitations

