MergeVQ: A Unified Framework for Visual Generation and Representation with
Disentangled Token Merging and Quantization
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Abstract

Masked Image Modeling (MIM) with Vector Quantiza-
tion (VQ) has achieved great success in both self-supervised
pre-training and image generation. However, most existing
methods struggle to address the trade-off in shared latent
space for generation quality vs. representation learning and
efficiency. To push the limits of this paradigm, we propose
MergeVQ, which incorporates token merging techniques
into VQ-based generative models to bridge the gap between
image generation and visual representation learning in a
unified architecture. During pre-training, MergeVQ decou-
ples top-k semantics from latent space with the token merge
module after self-attention blocks in the encoder for subse-
quent Look-up Free Quantization (LFQ) and global align-
ment and recovers their fine-grained details through cross-
attention in the decoder for reconstruction. As for second-
stage generation, we introduce MergeAR, which performs
KV Cache compression for efficient raster-order prediction.
Extensive experiments on ImageNet verify that MergeVQ as
an AR generative model achieves competitive performance
in both visual representation learning and image genera-
tion tasks while maintaining favorable token efficiency and
inference speed. Code and model will be available at
https://apexgen—-x.github.io/MergeVQ.

1. Introduction

Vector Quantization (VQ) [58] has garnered increasing at-
tention for its ability to encode continuous visual signals
into discrete tokens, enabling autoregressive (AR) models
to process visual modalities. Since VQGAN [20], most vi-
sual AR generative models have adopted a two-stage de-
sign: first encode signals into discrete latent space for pre-
training, then generate them with an autoregressive Trans-
former. Besides generation, BEiT [3] proposed Masked Im-
age Modeling (MIM) based on the VQ framework, achiev-
ing successful latent-based pretraining [35, 37] and thus at-
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Figure 1. MergeVQ learning paradigms. (a) MergeVQ Tok-
enizer extracts K semantic tokens with decoupled positional infor-
mation (retained in source matrix) by ToMe [6] while quantizing
spatial details by LFQ [47, 70], which will be recovered and recon-
structed correspondingly. (b) MergeVQ with random-order Gen-
erator [49] generates K discrete tokens with associated position
instructions while trained Source Prediction and decoder restore
position details. (¢) MergeAR Generator predicts L tokens effi-
ciently in raster-order by Next-token Prediction (NTP) [55] with
KV Cache compression to remove the redundancy.

tracting growing interest in unifying visual representation
learning and generation tasks in a shared latent space [78].

However, recent studies [43, 79] have shown that visual
generation and representation capabilities often lack con-
sistency [69] under VQ-based learning framework, i.e., im-
provements in one task may not necessarily benefit the oth-
ers. This inconsistency is conjectured to arise from the com-
peting objectives for identical embedding space: represen-
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tation learning tasks emphasize inter-class discrimina-
tion to maximize high-level semantics, while generative
tasks prioritize the reconstruction of details. In addi-
tion, training obstacles brought by VQ itself further limit
the optimization process. For example, the gradient ap-
proximation in canonical VQ (e.g., VQGAN) sets an op-
timization bottleneck for the first-stage training. Moreover,
the quantization of embedding space inevitably strips away
fine-grained spatial information, which requires the models
to reconstruct images with the loss of details and thus af-
fects both the representation learning and generation.

As such, efforts have been made to extract rich semantic
features from visual signals for quantization to improve the
representation capacity of generative models [60, 81]. How-
ever, these coarse-grained semantics often sacrifice detailed
information, making it difficult to support high-quality im-
age reconstruction and generation, resulting in significant
performance degradation. In this paper, we argue that rep-
resentation learning and generation are not completely con-
flicting but with intrinsic complementarity. The crux lies in
exploiting such complementarity while minimizing the in-
formation loss, which requires specific designs. To achieve
this, we propose to decouple coarse-grained semantics from
latent space during training and recover them for recon-
struction to meet the different needs while minimizing the
information loss and overhead. By leveraging token merg-
ing techniques [6], the encoder compresses latent space into
K semantic tokens while preserving the fine-grained spa-
tial information as positions within a source matrix, as il-
lustrated in Figure 1. During reconstruction, the latent fine-
grained details can be restored with this source matrix while
the K compressed tokens serve as high-level semantics for
global alignment [9, 78]. Built upon this intuition, we pro-
pose MergeVQ, which employs token merging and Look-up
Free Quantization (LFQ) for spatial and channel compres-
sion. Extensive experiments show that MergeVQ as an AR
generative model achieves competitive performance in both
image generation and visual representation learning with fa-
vorable efficiency. Our contributions can be summarized as:

* We present a fresh learning paradigm that integrates to-
ken merging into a VQ-based AR generation framework,
where high-level semantics are decoupled from patients
in the first-stage training and can be restored with source
matrix for details reconstruction, thus effectively reduc-
ing information loss while bridging the gap between rep-
resentation learning and generation in a unified model.

* We offer two schemes for MergeVQ’s second-stage gen-
eration. (i) We propose MergeAR, which performs KV-
Cache compression for efficient raster-order prediction.
(i1) With the source recovery module, existing random-
order generators can also be directly used for generation.

* Experiments show MergeVQ’s competitive performance
in both visual representation learning and image genera-
tion, with favorable token efficiency and inference speed.

2. Related Work

2.1. Auto-regressive Image Generation

Tokenizer with Vector Quantization. Vector quantiza-
tion, introduced by VQ-VAE [58] and enhanced by VQ-
GAN [20] with adversarial loss and Transformer integra-
tion, faces three key challenges in traditional cluster-based
VQ approach: (i) Gradient approximation issues: Straight-
through estimator creates imprecise encoder gradients, ad-
dressed by MAGVIT-v2 [69] and OpenMAGVIT2 [44]
through extended training. (ii) Inefficient codebook learn-
ing: Commitment loss causes uneven gradient distribution
and codebook collapse. Solutions include RegVQ [74] and
Kepler Codebook [40]’s priors, and BEiT.v2 [51] and ViT-
VQGAN [66]’s EMA with normalization. (iii) The dis-
crete bottleneck. Quantization eliminates fine-grained de-
tails, hampering generation and reconstruction. RQ [31]
employs multi-level quantization to reduce this informa-
tion loss. Look-up Free Quantization quantizes along chan-
nels, reducing overhead while improving codebook us-
age. Attempts like FSQ [47], MAGVIT-v2 [69], Open-
MAGVIT?2 [44], [30, 62, 77] demonstrate results that match
or exceed vanilla VQ. Another research direction acceler-
ates inference using Adaptive-Length Quantization to com-
press tokens. These methods utilize cross-attention [19,
72], attention-based token extraction [28], or token group-
ing [ 18], reducing token number for faster generation.

Auto-regressive Generation. VQGAN introduced au-
toregressive visual generation following the raster-order
Next Token Prediction (NTP) in GPT [52, 53]. Subse-
quently, numerous works have built upon this raster gen-
eration paradigm, including LlamaGen [55] and Open-
MAGVIT2 [44]. Concurrently, a line of research has
explored parallel decoding methods to accelerate genera-
tion, exemplified by MaskGiT [10], which employs non-
sequential generation to enhance generation speed. Re-
cently, several studies have investigated randomized gener-
ation techniques, where token positions are predicted prior
to token embeddings, or learnable positional encodings are
utilized for position prediction, as demonstrated in works
such as RandAR [49] and RAR [71].

2.2. Unifying Representation and Generation

Since BEIT [3] first combined Masked Modeling with VQ
for pre-training, research unifying representation and gen-
eration within a latent space has gained increasing inter-
est [33]. These studies, typically conducted within cluster-
based VQ frameworks, fall into two categories: (i) Using
Pre-training Techniques in Quantized Space. MQ-VAE [28]
quantizes semantic tokens by masking important ones for
reconstruction. MAGE performs Masked Modeling di-
rectly in latent space during second-stage generation train-
ing, while BEIiT abandons second-stage generation, using
Masked Modeling as the second stage itself. (ii) Using rep-
resentative tasks to enhance generation quality. DiGIT [81]
extracts semantic tokens from pre-trained models for rep-
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Figure 2. Overview of MergeVQ framework, which contains two stages and three groups of subtasks (Sec. 3.1). (a) As for representation
learning (Sec. 3.2), K semantic tokens are extracted by the encoder with self-attention and token merging [6], which can be aligned globally
with a pre-trained teacher while learning contextual information by predicting the source matrix. (b) As for reconstruction (Sec. 3.3), taking
K merged and quantized tokens as the input, the positional information can be retained by the Source Recovery module, and then high-
quality details will be reconstructed. (c¢) As for generation (Sec. 4), we utilize the source matrix to construct a causal mask for training and
leverage the KV cache to prune repeated tokens during inference for efficient generation.

resentation learning while using a finely crafted decoder
for generation. VQ-KD [60] employs a pre-trained teacher
model to guide token reconstruction. REPA [73] proposes
that representation alignment can significantly improve the
training efficiency and generation quality of diffusion mod-
els. Some approaches align visual and text codebooks via
CLIP-inspired methods [75]. SPAE [68] uses hierarchi-
cal codebooks to align visual representations with frozen
LLMs, while V2L Tokenizer [79] employs global and local
tokenizers for multimodal alignment.

2.3. Token Compression in Transformer

Token compression techniques have become essential for
enhancing efficiency in Transformer-based architectures,
particularly in ViTs and LLMs. ToMe and its advance-
ments [5, 7, 8, 11] employ lightweight BSM techniques to
achieve pruning-like efficiency, improving ViT throughput
with minimal performance degradation. However, BSM-
based methods often suffer from information token loss due
to heuristic merging. For ViT encoders, token merging
methods like k-means [46] and spectral clustering [4] have
been explored to mitigate this issue, offering more con-
trolled outputs. Yet, these techniques introduce complex
iteration schemes that may conflict with reducing model
complexity in ViT layers. For decoders, recent KV cache
compression strategies like FastGen [23], SnapKV [39],
and H»O [76] optimize memory usage and inference speed
through selective token retention and key-value pairs com-
pression. While these methods effectively boost LLM infer-
ence efficiency, they remain inapplicable in training phase.

3. MergeVQ Learning Paradigm
3.1. MergeVQ Framework

In this section, we introduce the MergeVQ framework
based on vector quantization and define key notations.
Token Merge Encoding: Given an image X €
RIXWX3 e employ a two-stage downsampling encoder
E. First, a CNN layer &; extracts features, producing a fea-

ture map Z € R7 7> where f is the downsampling
factor and d denotes the channel number. The feature 7 is
then flattened into L-length token sequence Z;, € RL*? as:

Zp = &i(X). ey

We then employ attention with the merging operation, de-
noted as &, for second-stage extraction. During this pro-
cess, we obtain a shorter sequence Zx € R¥*? along with
its source matrix S € R¥*Z that preserves the spatial rela-
tionships of the sequence. This process is expressed as:

Zg,S =&(Zy). 2

As such, the entire encoding process can be represented as:

Zr, S = E(X). 3)

To ensure that Zx owns rich semantics, we concurrently
impose global alignment on Z as discussed in Sec. 3.2.
Quantization: We employ LFQ as MergeVQ’s quan-
tization module to minimize the loss of details. Specifi-
cally, the codebook is reduced to an integer set and could
be denoted as: C = xN,{-1,1}, |C| = 2V. Thus,



the quantization can be summarized as follows: zx; =
sign(zgi) = —1-I(zx; < 0) + I(zx; > 0), where
zk; denotes i-th vector in K semantic tokens Zx. Then

the index of the quantized feature z,,; is formulated as

Index(zx;) = Y 1 2871 I(zx45 > 0). Finally, we obtain

the quantized semantic tokens, denoted as Z,:
Zkq = Q(Zk,C). “4)

Token Recovery and Reconstruction: we first perform
token-level reconstruction with the recovery module R (-, -)

and source matrix S, which yields a new L-length Z;, as:
Zr, = R(Zyk., S). (5)

This sequence is then fed into the decoder D for pixel-level
reconstruction, which could be described as:

X =D(Zy). (6)

3.2. Harmonize Reconstruction and Representation

Inspired by research on Masked Image Modeling in repre-
sentation learning, we employ Token Merge to reduce the
number of tokens and leverage Source Recovery to restore
all tokens for contextual modeling, seamlessly integrating
representation learning into our framework. To further en-
hance the representation capability, we impose global align-
ment constraints on the compressed visual tokens. Our
framework is detailed and illustrated in Figure 2.
Attention with Token Merging: After encoding the in-
put image X into Z, as in Eq. (1), attention mechanisms
further extract features. We employ the Token Merge At-
tention module proposed by ToMe [6] for token merging.
Specifically, in each attention block, the top 2r tokens by
attention score are merged into r tokens. With n attention
blocks, the final token count K satisfies KX = L — nr. The
implementation details are provided in Appendix A.

Zx = ToMeAttention(Z). @)

During this process, a source matrix S would be maintained
to record the origin of each token. Starting with an original
token sequence of length L, after N layers of ToMe Trans-
former Blocks, the sequence is reduced to length K. The
source matrix owns the size of K x L, where S;; € {0, 1}.
The details are available in the Appendix.

i, S = E(X). (8)

The source matrix preserves the positional and spatial infor-
mation of the image during the encoding process.

Source Recovery Model: We introduce the Source Re-
covery Model to facilitate contextual modeling of tokens.
In particular, for the K semantic tokens and the Source ma-
trix that records their positional information, our aim is to
design a module capable of recovering these tokens with-
out relying on their source. To achieve this, we incorporate
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Figure 3. Analysis of kept tokens in reconstruction and repre-
sentation learning. Three MergeVQ tokenizers are trained with
128 resolution for 30 epochs on ImageNet-1K. They keep 256,
144, and 36 tokens with ToMe [6] in the encoder during training.
In inference, we evaluate rFID and linear probing top-1 accuracy
with diverse merge ratios to show the trade-off between generation
and representation. Please view Sec. 5 and Appendix B for details.

K=64 K=144 . k=256 Original

Figure 4. Visualization of MergeVQ (G+R) reconstruction.
With the kept tokens varying from 64 to 256, clustering maps of
ToMe Attention indicate that MergeVQ can extract discriminative
semantic tokens while recovering contextual positions and details.

a lightweight Transformer decoder with L learnable posi-
tional embeddings () to interact with the K tokens, as:

QK" ) T

» = softmax | ——— | Q" . )
¢ ( Vd

Subsequently, we predict the source matrix S, thereby en-

abling contextual modeling of tokens as:

S =arg max (softmax (QTKT)). (10)

Overall, we employ cross-entropy to measure the difference
between S and S to optimize this Source Recovery Model.
The learning object source loss L is thus formulated as:

Loe ==Y 8ijlog(Si;)+(1-Si;)log(1-5; ;). (11)
,J

Global Alignment: To further enhance the representa-
tion capability of semantic tokens, we perform global align-
ment on semantic tokens using the Self Distillation ap-
proach proposed by DINO [9]. We uniformly sample an
image X from the training set, apply random augmenta-
tions to generate views u and v, and feed them into the
DINOV2 encoder and MergeVQ. The predicted category

distributions from the CLS tokens, v; = Pg/CLS] (v) and

up = P[,CLS] (u), are aligned by minimizing the cross-

entropy between them. The alignment loss is:

Liors) = —Fy ") log P w). (12



3.3. Recovery and Reconstruction

Token Recovery For Reconstruction: Before reconstruct-
ing the image, we first perform token-level recovery to re-
store contextual information. Then, we reconstruct the im-
age at the pixel level based on the recovered visual tokens,
aiming to restore the fine details lost due to channel quan-
tization. The Token Recovery process is achieved through
the source matrix S. This process is denoted as:

Z1 = R(Zxq, S). (13)

Specifically, we utilize the positional information recorded
in S to expand Zx back into a sequence of length L. For
example, if the i-th row of S satisfies S(4,71) = 1 and
S(i,j2) = 1, we recover the L-length sequence Z; such
that Zle = ZLj2 = ZK, This process can be imple-
mented through matrix multiplication as:

K L
Zr =&l = ZkeS = [z Zgi X siz] ()
i=1

i=1

During training, we obtain the ground-truth source matrix
through the encoder, allowing straightforward token recov-
ery. In the inference phase, the predicted source matrix S
is obtained by the Source Recovery Model in Sec. 2.2, en-
abling token recovery. Subsequently, we apply the decoder
D to reconstruct the recovered Z L as:

X =D(Z). (15)

Hybrid Model with Weight Initialization: As for net-
work architectures for generative tasks, feature extraction
is typically performed using CNN, while pure Transformer-
based backbones are relatively rare. However, in represen-
tation learning, Transformer-based architectures are preva-
lent. To bridge this gap, we employ a hybrid model that
leverages the ToMe Attention mechanism of Transformers
as a dynamic downsampling method. This approach not
only enhances attention efficiency but preserves strong rep-
resentation capabilities and flexibility. To further exploit
these advantages, we integrate a pre-initialized Transformer
backbone into our VQ architecture. The specific network
architecture is detailed in Appendix A.l and illustrated in
Figure 2.

Adaptive Merge Ratios for Diverse Tasks: Unlike ex-
isting adaptive-length quantization methods [38, 72], our
MergeVQ framework uses variable merge ratios r dur-
ing training instead of fixed sequence lengths. The ToMe
module provides flexibility for different tasks through ad-
justable merge ratios. Our experiments show that represen-
tation learning and reconstruction tasks benefit from differ-
ent merge ratio settings. As Figure 3 illustrates, represen-
tation tasks (Sec. 3.2) favor larger merge ratios [26, 29],
which help extract semantic features while preserving con-
textual information. Based on these findings, we offer
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Figure 5. Distribution of merge ratios sampling in training.
(a) With 256 tokens in total, MergeVQ (R) and (G+R) sample the
square number as kept token numbers in [36, 100] and [121, 225]
with exponential and Gaussian distributions for stage-1 training,
while the G+R version sampling from [144, 256] for stage-2 train-
ing. (b) With 1024 tokens in total, MergeVQ (G) samples the
square kept number in [225,400] and [256, 1024] with Gaussian
and exponential distributions in both stage-1 and stage-2 training.

three MergeVQ variants: Representation (R) version for
enhanced generalization, Generation and Representation
(R+G) version balancing both tasks, and Generation (G)
version optimized for high-performance generalization and
reconstruction. Meanwhile, we provide another trick sam-
ple merge ratios to expose the model to varying token
counts, which could enhance the generalization and robust-
ness of both stage-1 and stage-2 training. In practice, we
retained three versions of semantic token counts: 256, 144,
and 36, corresponding to pure Generation (G), Generation
and Representation (R+G), and pure Representation (R), re-
spectively. During training, we determine the correspond-
ing merge ratio r by sampling the number of tokens re-
tained, focusing on a range around the target token count
for each version. We use exponential distribution sampling
for the G and R versions, and discrete Gaussian distribu-
tion sampling for the G+R version. The sample details are
available in Appendix A.

4. MergeVQ for Efficient Generation
4.1. MergeAR with KV Cache Compression

We introduce MergeAR for efficient autoregressive genera-
tion based on our Merged Tokens framework. Unlike com-
mon approaches, MergeAR leverages intrinsic token spar-
sity to accelerate generation. It compares each new token
against the existing sequence, pruning similar tokens while
preserving essential information through strategic copying.
A position-recording system ensures output coherence.

During training, we first sample a merge ratio r as Ap-
pendix. A, which determines the number of merged visual
tokens and results in K discretized tokens along with their
ground-truth source matrix .S. To regulate the level of spar-
sity, we introduce a Merge Instruction Token M, which
serves as an indicator of merging extent. Using the source
S and target Zx, we construct a causal mask to guide
the training process. Concretely, suppose the causal mask
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M € REXE M (i, j) € {0,1} are denoted as:
1—1

M(i,§) = 1,when S(i,j) = Land 1 ¢ | J S(k,5). (16)
k=1

As such, efficient generation can be achieved while enabling
the model to effectively capture contextual information. In
the inference phase, we construct the KV cache using the
same method as for the causal mask. When generating the
t-th token, we compare it with the previously generated to-
kens. If the generated token is a duplicate, it is pruned and
not stored in the cache. Otherwise, if a new token is gener-
ated, it is added to the KV cache. View Figure 6 for details.

4.2. Randomized Auto-regressive with Source
Recovery

Concurrently, Randomized AR techniques like Ran-
dAR [49] introduce positional encoding prediction, whose
objective py(x|P) could be formulated as:

o ¥n—1

N
T e (xgn) | T T x”(nfl)ypy‘flf("v’ (17)
n=1

where 27" is the i-th token in this randomly shuffled N-
length sequence, and 7 (i) denotes its original position in
raster order. We then insert a positional instruction token
P () before each image token mf(l).

MergeVQ can be also implemented by this RandsAR
generative framework, where the K quantized tokens Zx,
obtained in the first stage serve as target image tokens, and
source matrix is used as the corresponding positional infor-
mation. The model is trained and optimized through Ran-
dAR paradigm. After generating K generated tokens, we
invoke the source recovery model and decoder, as described
in Eq.(6) and Eq.(5), to recover all tokens for generation.

5. Experiments

5.1. Implementation Details

Visual Tokenizer Setup. We offer three MergeVQ versions
for visual representation learning and generation: MergeVQ

(G) for pure generation, MergeVQ (G+R) for both gen-
eration and representation, and MergeVQ (R) for repre-
sentation learning only. As detailed in Appendix A.l, we
present three architectures of these versions with the latent
embedding dimension of 512, whose encoders have 63M,
62M, and 86M parameters. As discussed in Sec. 3.2, we
apply the hybrid model that contains 4 and 5 hierarchical
stages of ResNet blocks [25] with 12-layer of ToMe Atten-
tion blocks [6] at the last stage for the encoder networks
in MergeVQ (G) and MergeVQ (R+G), as well as LFQ
layer [70] with the dimension of 18. The corresponding
decoder shares a similar architecture as encoders without
ToMe modules. For fair comparisons, MergeVQ (R) adopts
ViT-B [17] with random initialization as encoder but still
adopts an identical decoder and LFQ as MergeVQ (G+R).
As for the token number after quantization, the raw out-
put number of three versions are 1024, 256, and 256, and
we merge them to 256, 144, and 36 tokens during train-
ing and inference. All versions are trained by AdamW op-
timizer [42] with (81, 52) of (0.5,0.9), a default learning
rate of 1le — 4, and a total batch size of 256 for 200~300
epochs on ImageNet-1K without annotations. As for recon-
struction, models are trained in 256 x 256 resolutions with
a combination of ¢; reconstruction loss, GAN loss, percep-
tual loss, entropy penalty, commitment loss, and LeCAM
regularization as MAGVITv2, combined with our proposed
source recovery loss Ly, and alignment loss L[C LS]-

Visual Generator Setup. Following LlamaGen [55]
and the concurrent work RandAR [49]', we conduct three
versions of AR generators with MergeVQ tokenizers:
MergeVQ with vanilla LlamaGen for classical raster-order
generation, MergeVQ with MergeAR (built upon Llama-
Gen) for efficient generation, and MergeVQ with RandAR
for random-order generation. As for the third version, it re-
quires the pre-trained Source Recovery module to predict
the source matrix with the generated sequences as men-
tioned in Sec. 4.2, which can be a 2-layer standard Trans-
former decoder with 512 embedding dimensions at 7M pa-
rameters. We adopt LlamaGen-L as the generator archi-
tecture, which is a 24-layer Transformer decoder [53] in
LLaMA-based architecture [57] and trained by AdamW op-
timizer [42] with a weight decay of 0.05, a basic learning
rate of 4 x 10%, and a batch size of 1024 for 300 epochs.
View Appendix A.2 for more details.

5.2. Self-supervised Pre-training

We evaluated self-supervised pre-trained models by linear
probing (Lin.) [26] and end-to-end fine-tuning (FT) [3] pro-
tocols on ImageNet-1K. Table | shows that MergeVQ vari-
ants substantially outperform prior models like BYOL, Mo-
CoV3, and DINOV2 in performance and efficiency, notably
with fewer tokens achieving superior accuracy. MergeVQ
(R), which focuses on representation learning, achieves im-
pressive results with only 36 tokens. With fewer tokens

'More studies of MergeAR and combination of MergeVQ with concur-
rent AR works [49, 71] will be updated in the arXiv preprint.



Table 1. Comparsion of self-supervised pre-training on ImageNet-1K. Top-1 accuracy of linear probing (Lin.) and fully fune-tuning
(FT) results are reported. 1 denotes using the multi-crop augmentation or additional data. We summarize the target for alignment (Align.)
and reconstruction (Rec.), the pre-training epochs, the encoder architecture type, and the number of learnable parameters (#Param) of the
encoder and latent tokens (#Tokens), where MIM and TMM denote Masked Image Modeling and Token-merge Modeling.

Support Method Date Align. Rec. Epochs | Encoder #Param #Tokens | Accuracy?
Tasks Target Target Type Lin. FT
BYOL [24] NeurIPS°2020 | MSE X 800 R50-W2 94M <7 |75.6 —
Contrastive | MoCoV3 [12] ICCV’2021 | InfoNCE X 300 ViT-B 86M 196 |76.7 83.2
Pre-training | DINO? [9] ICCV’2021 CE X 300 ViT-B 86M 196 |78.2 83.6
DINOv2? [48] TMLR’2024 CE X 1000 ViT-B 86M 196 |84.5 85.7
BEIT [3] ICLR’2022 X DALLE 800 ViT-B 86M 196 |56.7 83.2
iBOT! [78] ICLR’2022 CE EMA 800 ViT-B 86M 196 [76.0 84.0
MAE [26] CVPR’2022 X RGB 1600 ViT-B 86M 196 |68.0 83.6
MIM SimMIM [64] CVPR’2022 X RGB 800 ViT-B 86M 196 | 679 83.8
Pre-training | CAE [13] 1JCV’2023 X DALLE 1600 ViT-B 86M 196 704 83.6
PeCo [16] AAAT’2023 X VQVAE 800 ViT-B 86M 196 — 845
A2MIM [32] ICML2023 X RGB 800 ViT-B 86M 196 |68.8 84.2
I-JEPA [1] CVPR’2023 X RGB 600 ViT-B 86M 196 |729 -
EVA-02 [21] CVPR’2024 X EVA-CLIP 300 ViT-B 86M 196 — 84.0
VIiT-VQGAN [66] ICLR’2022 X RGB 100 | VIM-Base 650M 1024 | 651 —
MaskGIT [10] CVPR’2022 X RGB 200 BERT 227TM 256 574 -
Generative | LlamaGen [55] NeurIPS’2024 X RGB 40 CNN 72M 1024 (476 —
Titok-B [72] NeurIPS’2024 X VQGAN 200 Titok-B 86M 64 539 —
REPA [73] ICLR’2025 | DINOv2  Velocity 100 SiT-L/2 458M 1024 |711 —
MAGE-C [35] CVPR’2023 |InfoNCE VQGAN 1600 ViT-B  24+86M 196 |78.2 829
Generative & | DiGIT [81] NeurIPS’2024 | DINOv2 RGB 200 ViT 219M 256 717 -
Pre-training | MergeVQ (G+R) Ours DINOv2 RGB+TMM 200 Hybrid 63M 144 1779 82.0
MergeVQ (R) Ours DINOv2 RGB+TMM 300 ViT-B 86M 36 79.8 84.2

than DINOv2 (196), MergeVQ (R) achieves 79.8% Lin.
Accuracy and 84.2% FT accuracy, leveraging a flexible
and discriminative latent space for both efficiency and per-
formance. MergeVQ (G+R) performs slightly lower than
MergeVQ (R) due to its inclusion of generation alongside
representation learning, highlighting the trade-off between
tasks, which require more tokens, and pretraining, which
benefits from coarse-grained latent. Despite this, MergeVQ
(G+R) remains competitive, reaching 77.9% in Lin. and
82.3% in FT, demonstrating competitive results while han-
dling both generative and representation objectives.

5.3. Image Generation

Reconstruction. Table 2 compares the reconstruction per-
formance of VQ-based tokenizers on 256 x 256 ImageNet-
1K. MergeVQ (G+R) achieves an effective balance between
reconstruction and token efficiency (nearly a 100%-utilized
LFQ codebook with dynamic token lengths), leading to an
rFID of 1.48. This outperforms methods that use larger
codebooks and more tokens, such as RQ-VAE and Llam-
aGen. MergeVQ (G), applying the same codebook but with
256 tokens, hits an even lower rFID of 0.54, excelling in
reconstruction quality. Overall, MergeVQ variants show
high performance by optimizing codebook and token usage.
While MergeVQ (G+R) slightly sacrifices rFID for han-
dling both generation and representation, it remains com-
petitive, highlighting the trade-off between these objectives.

Class Conditional Generation. As shown in Table 3,
MergeVQ (G+R) and MergeVQ (G) stand out as compet-
itive models. MergeVQ (G+R) uses 144 latent tokens and
our MergeAR generator and achieves a gFID of 3.27 and

Table 2. Comparison of reconstruction on 256 <256 ImageNet-
1K with reconstruction FID (rFID) of VQ tokenizers. We sum up
the types, sizes, and dims of the codebook with its usage ratio. Ra-
tio and #Tokens denote the downsampling rate and token number.

Method VQ Codebook Ratio #Tokens rFID

Type Size Dim Usaget 1 1
Taming-VQGAN [20]|Cluster 20 256 49% | 16 16 7.94
SD-VQGAN [54] Cluster 210 4 - 16 16> 5.15
RQ-VAE [31] Cluster 2% 256 — 16 162 3.20
MaskGIT [10] Cluster 210 256 — 16 16> 228
LlamaGen [55] Cluster 2'* 8 97% | 16 16> 2.19
TiTok-L-32 [72] Cluster 22 16  — - 32 221
TiTok-B-64 [72] Cluster 22 12— — 64 1.70
VQGAN-LC [80] CLIP 10° 8 99% | 16 16%> 2.62
VQ-KD [60] DINO 28 32 100% | 16 16> 3.4l
MAGVIT-v2 [69] LFQ 2% 1 100% | 16 162> 1.16
OpenMAGVIT2 [44] | LFQ 2™ 1 100% | 16 162 1.17
MaskBiT [62] LFQ 2™ 1 100% | 16 16> 1.37
MergeVQ (R) LFQ 2'® 1 86% | 16 144 467
MergeVQ (G+R) LFQ 2 1 99% | 16 144 148
MergeVQ (G+R) LFQ 28 1 99% | 16 256 1.12
ViT-VQGAN [66]  |Cluster 2™ 8 96% | 8 162 128
OmiTokenizer [59] |Cluster 2% 8 — 8 162 1.11
LlamaGen [55] Cluster 24 8 97% | 8 162 0.59
TiTok-S-128 [72] Cluster 22 16  — — 128 1.71
VQGAN-LC [80] CLIP 10° 8 99% | 8 162 1.29
MergeVQ (G) LFQ 28 1 100% | 8 256 1.06
MergeVQ (G) LFQ 28 1 100% | 8 1024 0.54

an IS of 253.8 without CFG. When CFG and RandAR gen-
erator are applied, it improves to a gFID of 2.63 and an
IS of 279.5, surpassing many auto-regressive models. On
the other hand, MergeVQ (G) with a MergeAR generator,
which uses 256 tokens and 1024 steps, demonstrates even



Table 3. System comparsion of class-conditional generation on
256256 ImageNet-1K. Generation Fréchet inception distance
(gFID) and inception score (IS) are reported with ADM [15]. “#
P” means the parameter number, step means sampling steps, and

Table 4. Ablation of three versions of MergeVQ tokenizers with
the number of kept tokens during training for pre-training (linear
probing Acc.) and reconstruction (rFID) tasks on ImageNet-1k.

. . « ) G G+R R
1 denotes training tokenizers on OpenImages. Note that “-cfg” or #Tokens | tFID (1) |rFID (1) #Step (1) Acc. (1) FLOPs (1) | Acc. (1)
“-re” denotes using classifier-free guidance or rejection sampling, 756 141 715 64 356 762G —
and “-384” denotes for generating images at 384 x 384 resolutions 196 1.89 253 49 495 74.8G 51.2
and resize back to 256 x 256 for evaluation. 144 2.03 3.07 36 51.0 73.4G 52.5
Type Tokenizer Generator #P. Step gFID| IST 160 4(_) 42132 gg% ?2 g}é ;?gg 2431?
LDM-4[54]  400M 250 3.60 247.7 36 - 8.94 9 521 717G | 543
UVIiT-L/2 [2] 287M 250 3.40 219.9
UVIT-H/2 2] 501IM 250 2.29 263.9 . . .
Diff. VAE DIT-XL/2 [50]  675M 250 227 2782 Table 5. Ablation of main modules for MergeVQ generation
MDTv2-XL/2 [22] 676M 250 1.58 314.7 with reconstruction (rFID) and generation (gFID) evaluation.
SIT-XL [45] 675M 250 2.06 270.3 Version R g rFID gFID # Token
DIiMR-XL/2R [41] 505M 250 1.70 289.0 Gl Ground-tuth S S AR T a— )
VQGAN MaskGIT [10]  177M 8  6.18 182.1 (G+R) 2-layer Cross-Attention X 171 — 144
TiTok-B-64 MaskGIT-ViT [10] 177M 8  2.48 262.5 (G+R)+RandAR |2-layer Cross-Attention LlamaGen-L|1.71 2.63 144
Mask. TiTok-S-128%  MaskGIT-UVIiT-L [2] 287M 64 1.97 281.8 (G+R)+LlamaGen X LlamaGen-L| — 3.28 256
MAR MAR-B-cfg [36] 208M 100 2.31 281.7 (G)+LlamaGen X LlamaGen-L| — 3.14 1024
MAR MAR-L-cfg [36] 479M 100 1.78 296.0 (G)+MergeAR X LlamaGen-L| — 3.05 1024
VAR-d16 [56] 310M 10 3.30 2744
VAR VAR* VAR-d20 [56] 600M 10 2.57 302.6
VAR-d24 [56] 1.0B 10 2.09 312.9 5.4. Ablation Study
VQGAN GPT2 [53] 1.4B 256 15.78 74.3
VQGAN GPT2-re [53] 1.4B 256 5.20 280.3 We conduct ablation studies of key modules on ImageNet-
VIFVQGAN VIM-L[66]  1.7B 1024 4.17 175.1 1K. As for the tokenizer, Table 4 shows that MergeVQ (G)
ViT-VQGAN VIM-L-re [66] 1.7B 1024 3.04 227.4 . .
RQ-VAE RQTransre [31] 3.8B 64 3.80 3237 and MergeYQ (R) could achlevg the best recopstruchon
MAGVIT-v2  MAGVIT-cfg [67] 307M 256 1.78 319.4 and pre-training performances with 256 tokens (i.e., adap-
AR LlamaGen LlamaGen-L [55] 343M 256 3.80 248.3 tive downsampling instead of convolution projection) and
(raster) | LlamaGen  LlamaGen-L-384 [55] 343M 576 3.07 256.1 36 tokens (i.e., a small number of semantic tokens for bet-
LlamaGen LlamaGen-XL [55] 775M 256 3.39 227.1 .
LlamaGen  LiumaGenXL-384 (53] 775M 576 2.62 244.1 ter global alignment). MergeVQ (G+R) could well balance

OpenMAGVIT2  OpenMAGVIT2-B[44] 343M 256 3.08 258.3
OpenMAGVIT2 Open-MAGVIT2-L[44] 804M 256 2.51 271.7

MaskBit LlamaGen-cfg [55] 305M 256 1.52 328.6
VQGAN MAGE-L [35] 230M 20 6.93 195.8
AR & VQGAN DiGIT [81] 732M 256 3.39 206.0

PT MergeVQ (G+R) LlamaGen-L [55] 343M 256 3.28 251.6
MergeVQ (G+R) MergeAR (Ours) 343M 256 3.25 253.8

MergeVQ (G) MergeAR (Ours) 343M 1024 3.05 260.9
LlamaGen RandAR-L-cfg [49] 343M 88 2.55 288.8
AR LlamaGen RandAR-L-cfg [49] 775M 88 2.25 317.8

(random) MergeVQ (G+R) RandAR-L-cfg [49] 343M 64 2.63 279.5
MergeVQ (G) RandAR-L-cfg [49] 343M 88 2.24 320.4

better performance, with a gFID of 3.05 and an IS of 260.9
without CFG, and achieving a gFID of 2.24 and IS of 320.4
with CFG and RandAR generator. Despite using fewer to-
kens than several computationally expensive models (e.g.,
large VQGAN and ViT-VQGAN), MergeVQ variants ex-
cel in class-conditional image generation by balancing gen-
erative quality and computational efficiency, setting a new
benchmark for models in this domain. By using fewer to-
kens while maintaining high image quality, the MergeVQ
models show that it is possible to achieve state-of-the-art re-
sults with a more streamlined and efficient approach com-
pared to some of the most advanced diffusion and GAN-
based models. This makes the proposed MergeVQ particu-
larly promising for real-world applications where efficiency
and generation quality are both crucial.

the reconstruction performance with the pre-training task
and efficiency (fewer steps and FLOPs) by 144 tokens. As
for generation, we validate the three designed versions in
Sec. 4. In Table 5, the Source Recovery module is essential
to restore the positional information for MergeVQ (G+R)
with RandAR, which could approximate the ground-truth S
recover positional information for the generator. As shown
in Table 3 and Table 5, the proposed KV Cache compres-
sion in MergeAR could be more useful when the generated
sequence is redundant, which improves the vanilla Llam-
aGen by 0.09 vs. 0.03 gFID with the MergeVQ (G) and
MergeVQ (G+R).

6. Conclusion

This paper presents MergeVQ, a unified framework that
bridges the competing objectives of representation learn-
ing and image generation. It incorporates flexible token
merging-based designs to balance compact latent space and
fine-grained generation. In addition, we propose MergeAR,
a second-stage KVCache compressive technique that yields
considerable speed gains while retaining high-quality image
generation ability. Experiments demonstrate that MergeVQ
achieves competitive performance across tasks, outperform-
ing existing methods in both representation learning and im-
age generation. The results highlight MergeVQ’s versatility
and robustness, showcasing its ability to adapt to both gen-
erative and discriminative demands.
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MergeVQ: A Unified Framework for Visual Generation and Representation with
Disentangled Token Merging and Quantization

Supplementary Material

A. Implementation Details

A.1. Stage 1: MergeVQ Tokenizer

Tokenizer Network. MergeVQ introduces hybrid en-
coders with self-attention blocks [17] using ToMe mod-
ules [6], built after the bottom of the pure convo-
lution tokenizer (using Residual blocks) proposed in
MAGVITV2 [70]. We provide three versions of MergeVQ
tokenizers, where the G and G+R versions use the hybrid
encoders while the R version uses the vanilla ViT-B [17].
The specific network configurations, experimental settings,
and training details are thoroughly described in Table Al.
The corresponding decoder shares a similar architecture
as encoders except for using ToMe modules. MergeVQ
(G+R) and (G) versions initialize the parameters in the
Transformer encoder with DINOv2 pre-trained model (i.e.,
DINOv2-Base) by weight selection [65], while MergeVQ
(R) adopts ViT-B [17] without pre-training as the encoder.
Following the setup of OpenMAGVIT?2 [44] codebase, we
also remove the gradient penalty loss and replace StyleGAN
with PatchGAN as the discriminator (not employing DINO
discriminator as VAR [56] in the current version). During
training, we apply the reconstruction loss, the GAN loss, the
perceptual loss, and the commitment loss, combined with
the proposed source recovery loss L. as Eq. (11) and the
alignment loss L(c 5] as Eq. (12).

Source Recovery Model. The network details of the
Source Recovery module in MergeVQ are shown in Ta-
ble A2, where we utilize two cross-attention blocks to pre-
dict the source matrix based on the quantized tokens. As
for implementation, we utilize the standard Transformer de-
coder to compute from the K quantized tokens (as KV) and
L learnable recovery queries (as the query position embed-
dings) similar to Maskformer [14]. As for MergeVQ with
Randomized AR generators, we further fine-tuned this mod-
ule with the generator obtained after stage-2 training. De-
spite the fact that Source Recovery can be optimized during
the stage-1 training (regarded as the contextual representa-
tion learning task), the additional fine-tuning could further
enhance its robustness and generalization abilities for the
generation task. As for MergeAR, it does not require the
assistance of the Source Recovery module, which achieves
speed-up by the proposed KV Cache compress.

Token Merge Module. Token Merge Module follows the
design principles of ToMe [6]. It reduces the number of
tokens to improve efficiency while maintaining accuracy.
Unlike token pruning, which drops tokens, Token Merge

Table Al. Configuration of the network, weights of loss functions,
and training settings for the three versions of MergeVQ tokenizers
on ImageNet-1k. Note that the network designs are specified for
the encoder, and the reported FLOPs are calculated for the encoder
and decoder with ToMe [6] on 256 x 256 resolutions.

Settings G G+R R
Base channels 64 64 768
CNN Stage number 4 5 -
Channel multiplier [1,2,4,8] [1,1,2,4,8] [1]
Residual Blocks [4,4,4,4] [4,4,4,4,4] —
Attention Blocks [0, 0,0, 12] [0,0,0,0, 12] [12]
Downsampling ratio |[1, 1/2, 1/4, 1/8][1, 1/2, 1/4, 1/8, 1/16] [1/16]
Vocabulary size 218

Keep token number 256 144 36
Discriminator loss 0.8

Perceptual loss 0.7

LeCam regularization 0.01

L2 reconstruction 1.0

Commitment loss 0.25

LFQ Entropy loss 0.1

Source recovery loss 0.5 0.5 1.0
Alignement loss 0.1 1.0 1.0
Optimizer AdamW

(B1, B2) (0.5,0.9)

Weight decay 0.0

Training epochs 200 200 300
Base learning rate le-4

Batch size 256

LR scheduler Step Step Cosine
Gradient clipping - — 5.0
EMA decay 0.999

#Param. of Encoder 62.3M 62.7M 86.6M
FLOPs of Encoder 97.5G 46.4G 9.5G
#Param. of Decoder 82.8M 83.4M 83.4M
FLOPs of Decoder 169.2G 65.6G 65.6G

combines similar tokens into one representation, preserv-
ing more information and reducing accuracy loss, making
it a practical, lightweight approach for both inference and
training. Specifically, the token merging process consists of
the following four steps:

» Tokens are evenly divided into two groups, A and B,
based on their odd or even positions.

* Each token in A is paired with most similar token in B.

* The r most similar pairs are selected for merging.

* The features of tokens in these pairs are averaged to create
a single representation.

Token similarity is determined using the keys (K) from the
self-attention mechanism, with metrics like cosine similar-
ity or dot product to measure similarity between tokens in
A and B. Since merged tokens represent multiple originals,
attention computation is affected. To address this, the soft-
max attention scores are adjusted by adding log s, where s



Table A2. Configuration of generators and Source Recov-
ery model in MergeVQ or MergeAR for image generation on
ImageNet-1k.

Settings LlamaGen-L RandAR-L Source Recovery
Base channels 1024 1024 384
Depth 24 24 2
Attention heads 16 16 8

FFN dimension 4096 4096 1536
Dropout 0.1 0.1 0
Mask schedule Arccos Arccos —
Label smoothing 0.1 0.1 —

# Parameter 343M 343M ™
Optimizer AdamW AdamW AdamW
(51, B2) (0.9,0.99) (0.9,0.95) (0.9, 0.95)
Weight decay Se-2 Se-2 le-2
Training epochs 300 300 5 (optional)
Base learning rate | 4 x 107% 4 x 10~ 1x10™*
Batch size 1024 1024 256

LR scheduler Step Step Step
Gradient clipping 1.0 1.0 —

is the token size, ensuring merged tokens have the correct
influence and maintain consistency in representation.

QKT
Vd

where A denotes the attention weight matrix, () denotes the
query matrix, derived from the input tokens, K denotes the
key matrix, also derived from the input tokens, log s de-
notes the size adjustment term, where s represents the size
of the token, indicating the number of original patches it
represents after merging In practice, two types of merging
schedules are provided: (1) Linearly Decreasing Sched-
ule. The number of merged tokens linearly decreases as the
layer depth increases. (2) Square Decreasing Schedule.
The number of merged tokens decreases as the layer depth
increases in the squared schedule. These strategies allow
flexibility in balancing computational efficiency and model
performance. We choose the square decreasing schedule.

A = softmax ( + log s> , (18)

A.2. Stage 2: MergeVQ Generation

We conducted raster-order and random-order autoregres-
sive (AR) generation experiments based on LlamaGen [55]
(modified by OpenMAGVIT2 [44]) and RandAR [49]. Us-
ing the LlaMA-based architecture, we adopted 2D RoPE,
SwiGLU, and RMSNorm, which have been shown to be
effective in previous works and thoroughly described in
Table A2. The class embedding, indexed from a set of
learnable embeddings, serves as the starting token. As for
MergeAR, we also insert a Merge Instruction token, which
is a learnable embedding token with a given merge number.
For MergeVQ with RandAR [49], the classifier-free guid-
ance (CFG) [27] with a linear sampling schedule is adopted
as randomized AR variants [61, 71], where the optimal CFG
weight is determined through a sweep with a step size of 0.1
across all methods.

A.3. Merge Ratio Sampling Strategy

Although our proposed MergeVQ framework can target cer-
tain tasks (representation learning or generation) by choos-
ing a certain merge ratio, it can also benefit from a wide
range of merge ratios, a kind of data augmentation that en-
hances the generation abilities with dynamic merge ratios.
During training, we determine the corresponding merge ra-
tio r by sampling the number of tokens retained, focusing
on a range around the target token count for each version.
For the versions with 256 and 36 semantic tokens, we use
a discrete exponential distribution to sample the varying to-
ken counts as follows:

P(T =k)=(1—exp(—A))exp(—Ak), (19)

where T represents the variation in the number of tokens
with the index &£ > 0. As for the G and R versions, the
number of retained tokens is K = (16 — T)? and (6 +
T)2. As for the (R+G)-version in Figure 5, we use a discrete
Gaussian distribution for sampling.

N2
exp(— 40

P(T =k) = ~ :

keZ, (20

where retained semantic tokens in the training are (12+17")2.

A 4. Evaluation of Representation Learning

As for the linear probing protocol, we follow MAE variants
[13, 26] to evaluate the linear classification performance in
the latent token space and intermediate features of trained
SiT models. Specifically, we train a parameter-free batch
normalization layer and a linear layer for 90 epochs by
AdamW optimizer with a batch size of 1024, the Cosine
annealing learning rate scheduler, where the initial learn-
ing rate is set to 1 x 1073, As for the fine-tuning proto-
col, we follow SimMIM variants [32, 64] to fully fine-tune
the pre-trained encoder for 100 epochs with AdamW opti-
mizer and a batch size of 1024, which requires advanced
augmentations and training strategies for modern architec-
tures [34, 63].

B. More Experiment Results

We evaluate the reconstruction of MergeVQ (G) and
MergeVQ (G+R) tokenizers at different merging ratios Al.
The specific results can be seen in the figure, where we com-
pare our experimental results with those of MAGVIT?2 [70].
We also visualize the generation results of MergeVQ vari-
ants in Figure A2. It can be seen that as the merge ratio de-
creases, the reconstruction quality progressively improves.
The G+R Version also achieves competitive results with 144
tokens.
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Figure Al. Visualization of tokenizer reconstruction on ImageNet-1k. We conducted reconstruction experiments with our G version
using 1024, 576, 400, 256, and 144 tokens and with our G+R version using 256, 196, 144, 100, 64, and 36 tokens. The reconstruction
results are shown in the figure. As the number of retained tokens increases, the reconstruction becomes more realistic.
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Figure A2. Visualization of class conditional generation with MergeVQ variants on ImageNet-1k. The G version performs generation
on 256 tokens, and the G+R version performs generation on 144 tokens.
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