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A. Implementation Details
Training-time Data Augmentation. To improve robust-
ness against low-quality or blurry images, we incorporate
random degradation into the training process of NVCom-
poser. For each input sample, there is a 10% chance of
applying Gaussian blur with a kernel size of 7, and a sepa-
rate 10% chance of performing bilinear downsampling by
a factor of 2, followed by upsampling by the same fac-
tor. This augmentation strategy helps NVComposer pro-
duce clear and sharp novel views, even when the input im-
ages are of low quality.

Camera Trajectory Normalization. In the main paper,
we describe a method for normalizing camera trajectories
by designating the first view in both the target and condi-
tion segments as the anchor view. This anchor view is as-
signed an identity transformation for its camera pose, repre-
sented by the camera-to-world matrix. This normalization
process is applied to pose annotations across multi-view se-
quences. For camera translations, which can differ across
datasets and lack a consistent physical reference, we im-
plement a scaling normalization technique. This approach
addresses variations in translation scales between different
scenes. Specifically, the translation vector for each view, ωt,
is normalized as:

ωt := ωt/
[
max(→ω1→2, ..., →ωT →2) + 1

]
, (4)

where ωt is the translation vector for the t-th view. The
added constant 1 ensures that the relative scale differences
across samples are preserved while confining the translation
scale of all samples to the interval [0, 1). This approach em-
pirically improves the model’s ability to adapt to varying
translation scales across datasets.

Dataset Details. We train and evaluate our model us-
ing a mixed dataset comprising RealEstate10K [53],
DL3DV [21], CO3D [27], and Objaverse [5]. The num-
ber of samples used from each sub-dataset is provided
in Tab. A1. For Objaverse, we manually curate a subset
of 90,000 high-quality objects for training. We disable the
geometry-aware feature alignment for samples from Obja-
verse to avoid interference, as the DUSt3R shows instabil-
ity in rendered images with pure-white backgrounds. From
DL3DV, we utilize samples from the 1K to 7K subsets (a
total of 7,000 samples). During training, two frame se-
quences are randomly selected from each sample (repre-

Sub-Dataset Number of Samples

RealEstate10K [53] 62,992
DL3DV [21] 7,000
CO3D [27] 34,474

Objaverse [5] 90,000

Total 194,466

Table A1. Number of training samples used from each sub-dataset
in our experiments, along with the overall total.

senting a scene) as target and condition views, following
the sampling rules outlined in Sec. 4.1 of the main paper.

Weight Initialization. The weights of the dual-stream
diffusion model are initialized as follows:
• For inherited structures, such as the original residual

blocks and spatial-temporal attention layers, we initialize
weights using those from the pretrained video diffusion
model [44].

• For newly introduced layers, including input/output con-
volution layers, additional spatial-temporal attention lay-
ers, and the pose decoding head, weights are initialized
using a bounded uniform distribution [11]. Additionally,
the final sub-layer of each new component is initialized to
zero. This strategy ensures compatibility with the original
model’s inference behavior while preventing instability
during initialization, even with structural modifications.

Classifier-Free Guidance Settings. During training, we
randomly mask the image CLIP features, target poses, and
condition images with a probability of 10%. We observe
that a proper classifier-free guidance scale enhances tex-
tures in generated views. At inference time, we empirically
set the guidance scale to 3.0, balancing diversity and fidelity
in the generated results.

B. Additional Visualization Results
Feature Correspondence Visualization. To enhance our
understanding of the dual-stream diffusion model’s effec-
tiveness in NVComposer for managing multiple unposed
condition images, we visualize the spatial-temporal feature
correspondences within the model. Specifically, we focus
on features extracted from the sixth layer during the decod-
ing stage of the U-Net. Utilizing the method proposed in
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Figure B1. The cross-view feature correspondence using features extracted from the sixth layer of the U-Net decoder in the dual-stream
diffusion model. The similarity map is computed between the red point in the anchor view and all spatial locations in the other views,
visualized as heatmaps. The points with the highest correspondence are also marked with red dots. Please zoom in for a clearer view of
the details.

DIFT [33], we infer the diffusion model at timestep 10, us-
ing it as a feature extractor. We calculate the cosine similar-
ity between a feature at a red-marked location in the anchor
view and all spatial locations in other views. The resulting
heatmaps are visualized, with the highest similarity points
marked by red dots.

As illustrated in Fig. B1, our model exhibits strong cross-
view feature correspondence. In Case 1, where we analyze
the feature on the flower in the anchor view, correspond-
ing features in other views show a high response near the
flower. In Case 2, the anchor feature is taken from the right
corner of a table, and the corresponding table region in all
other views displays a strong response. These visualizations
underscore the model’s internal understanding of spatial re-
lationships, which is crucial for generative NVS tasks.

Additional Novel View Synthesis Results. To further
support the results presented in Tab. 1 of the main paper,
we provide additional visualizations in Fig. B2. For clearer
comparison, we include zoomed-in patches of the generated
novel views alongside the corresponding ground truth ref-
erences.

As illustrated in Fig. B2, our method consistently pro-
duces results that are visually closer to the real references.
In contrast, DUSt3R struggles with filling missing regions,
as it merely stitches the input condition images without gen-
erating plausible completions. ViewCrafter [49], which re-
lies on DUSt3R’s pre-reconstruction, inherits artifacts and
fails to achieve seamless outputs. MotionCtrl [40] and Cam-
eraCtrl [10], designed for controllable video generation, ex-
hibit poor camera control accuracy, often rendering views

from incorrect camera positions. Please refer to the supple-
mentary video for more results.

3D Reconstruction from Generated Views. The ability
of NVComposer to generate novel views from unposed con-
ditional images makes it an ideal candidate for 3D genera-
tion applications. To illustrate this capability, we employ
the NeRF version of InstantMesh [47], a multi-view large
reconstruction model, to create NeRF representations based
on the multi-view images and poses generated by NVCom-
poser, without utilizing its generation pipeline. The target
poses used for reconstruction are identical to those required
for generating views with NVComposer. For comparison,
we also generate 3D objects using multi-view outputs from
SV3D [36].

Figure B3 showcases the reconstruction results of our
method alongside those from SV3D [36]. The results
demonstrate that NVComposer produces 3D-consistent
novel views that enable high-quality 3D reconstructions.
Furthermore, our model effectively leverages information
from randomly unposed views, producing outputs that more
closely resemble the real reference. Additional results are
available in the supplementary video.

C. Discussion
Scalability in Number of Views. Our model is trained
with a random selection of 1 to 4 views as conditions. Ad-
justing the training settings allows for training with more
condition views. Additionally, extending the temporal
length of the model also enables support for more target
and condition views.
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Figure B2. More visualization of generative NVS results on RealEstate10K [53] and DL3DV [21] test set. For a better view, we zoom in
on patches for each method (in white square boxes). Dynamic comparison can be found in the supplementary video.

Limitation. As our model leverages the video priors, fail-
ure cases may occur when target camera poses are too dis-
crete. In addition, as a diffusion-based model, NVCom-
poser generates content in an iterative denoising process.

This iterative nature results in extended generation times,
often spanning several minutes. Such delays can limit its
applicability in real-time contexts like interactive applica-
tions and live simulations, where rapid response is essential.
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Figure B3. Results of 3D reconstruction on generated views from SV3D [36] and NVComposer. We utilize the large reconstruction model
from InstantMesh [47] (without additional generation) to reconstruct NeRF representations from the multi-view outputs of SV3D and
NVComposer. For animated results, please refer to the supplementary video.
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