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This is the supplementary document for NeISF++. We
discuss some details that are not shown in the main text due
to space limitations. The rest of this document is structured
as follows:
• Sec. A: Our pBRDF
• Sec. B: The correctness of our polarimetric renderer
• Sec. C: The neural fields used in the geometry initializa-

tion and joint optimization stages.
• Sec. D: Our synthetic and real multi-view HDR polarized

datasets
• Sec. E: Additional results
• Sec. F: Implementation details

A. Our pBRDF
This section is the complete description of our material

model. Our rendered Stokes vectors s can be obtained as
follows:

s = msdif + sspec, (1)

where sdif and sspec are the Stokes vectors from the dif-
fuse and specular polarization, m is the binary indicator
which determines the existence of the diffuse polarization.
It should be 0 when rendering conductors and 1 when ren-
dering dielectrics. The diffuse and specular components can
be represented as follows:

sdif =

∫
Ω

Rcam
dif ·Mdif · sr

dif dωi, (2)

sspec =

∫
Ω

Rcam
spec ·Mspec · sr

spec dωi. (3)

Where sr
dif and sr

spec are the already rotated incident Stokes
vectors of diffuse and specular components. Rcam

dif is the
rotation Mueller matrix, which rotates Stokes vectors to the
camera’s reference frame:

Rcam
dif =

1 0 0
0 cos (2ϕdif) sin (2ϕdif)
0 − sin (2ϕdif) cos (2ϕdif)

 . (4)

ϕdif is the rotation angle. Mdif is the material Mueller ma-
trix of diffuse polarization, which describes the process of

light entering the object, scattering multiple times under the
surface, and finally leaving the object. It can be formulated
as follows:

Mdif = (
a
π
cos θi)F

T
o ·D · FT

i . (5)

a is the diffuse albedo, θi,o denotes the incident/outgoing
angle, D ∈ R3×3 is a depolarizer:

D =

1 0 0
0 0 0
0 0 0

 , (6)

the Fresnel transmission term FT
i,o ∈ R3×3 is defined as:

FT
i,o =

T+
i,o T−

i,o 0

T−
i,o T+

i,o 0

0 0 T×
i,o

 , (7)

where T+
i,o = (T⊥

i,o + T
∥
i,o)/2, T−

i,o = (T⊥
i,o − T

∥
i,o)/2, and

T×
i,o =

√
T⊥
i,oT

∥
i,o. Where T⊥

i,o is the perpendicular term of
the transmission coefficient:

T⊥
i,o =

4 cos θi,o

√
η2 − sin2 θi,o

(cos θi,o +
√
η2 − sin2 θi,o)2

, (8)

and T ∥
i,o is the parallel term of the transmission coefficient:

T
∥
i,o =

4η2 cos θi,o

√
η2 − sin2 θi,o

(η2 cos θi,o +
√
η2 − sin2 θi,o)2

, (9)

where η is the real part of the refractive index. Then, we
can rewrite Eq. 2 as follows:

sdif =

∫
Ω

a
π
cos θi T+

o T
+
i T+

o T
−
i 0

T−
o T

+
i cos(2ϕdif) T−

o T
−
i cos(2ϕdif) 0

−T−
o T

+
i sin(2ϕdif) −T−

o T
−
i sin(2ϕdif) 0


· sr

dif dωi.

(10)



When rendering RGB images, Eq. 10 should be repeated
three times with separate diffuse albedos. Similarly, Rcam

spec
with the rotation angle ϕspec is as follows:

Rcam
spec =

1 0 0
0 cos (2ϕspec) sin (2ϕspec)
0 − sin (2ϕspec) cos (2ϕspec)

 . (11)

Mspec is the material Mueller matrix, which describes the
single bounce mirror reflection. It can be written as follows:

Mspec = ks
DG

4 cos θo
FR, (12)

where ks is the specular coefficient. GGX distribution func-
tion D [14] is defined as follows:

D =
r2

π cos4 θh(r2 + tan2 θh)2
, (13)

where r is the roughness, θh is the angle between the
halfway vector and surface normal. Smith G function [6]
is as follows:

G = (
2

1 +
√
1 + r2 tan2 θi

)(
2

1 +
√
1 + r2 tan2 θo

).

(14)
Fresnel reflection term FR ∈ R3×3 is as follows:

FR =

R+ R− 0
R− R+ 0
0 0 R× cos∆

 , (15)

R+ = (R⊥ + R∥)/2, R− = (R⊥ − R∥)/2, and R× =√
R⊥R∥. R⊥ is the perpendicular term of the reflection

coefficient:
R⊥ = |(r⊥)2|, (16)

r⊥ =
cos θo − (η − ik) cos θt
cos θo + (η − ik) cos θt

, (17)

and R∥ is the parallel term of the reflection coefficient:

R∥ = |(r∥)2|, (18)

r∥ =
(η − ik) cos θo − cos θt
(η − ik) cos θo + cos θt

, (19)

where η and k are the real and imaginary components of
the complex refractive index. cos θt is the angle of trans-
mission, and it can be calculated using Snell’s law:

cos θt =

√
1− sin2 θo

(η − ik)2
. (20)

∆ is the phase shift. in Baek pBRDF [2] cos∆ is hard coded
as -1 or 1 when the incident angle is less or larger than the
Brewster angle. However, this hard coding does not hold

for the complex refractive index. We implement the phase
shift based on the Fresnel wave theory [3]. Let x⊥ and y⊥

be the real and imaginary component of r⊥:

r⊥ = x⊥ − iy⊥, (21)

and similarly:
r∥ = x∥ − iy∥. (22)

Then, the cosine value of the phase shift can be calculated
as follows:

cos∆ = cos (arg(r∥)− arg(r⊥))

= cos (δ∥ − δ⊥)
= cos δ∥ cos δ⊥ + sin δ∥ sin δ⊥

=
x∥x⊥ + y∥y⊥√

(x∥)2 + (y∥)2
√
(x⊥)2 + (y⊥)2

(23)

Then Eq. 3 can be rewritten as follows:

sspec =

∫
Ω

ks
DG

4 cos θo R+ R− 0
R− cos 2ϕspec R+ cos 2ϕspec R× sin 2ϕspec cosψ
−R− sin 2ϕspec −R+ sin 2ϕspec R× cos 2ϕspec cosψ


· sr

spec dωi,
(24)

where ϕspec is the rotation angle from the reference frame
of Mspec to the camera axis. Similar to the diffuse term,
Eq. 24 also needs to be repeated three times with separate
specular coefficients and refractive indexes when rendering
RGB images.

B. Polarimetric Renderer
Our polarimetric renderer is implemented in PyTorch

[11]. To verify correctness, we compare the rendering re-
sults with Mitsuba 3 [7], a physically-based renderer that
implements a large number of BRDF plugins. We compare
with the rough conductor BRDF plugin for conductors, and
polarized plastic BRDF plugin for dielectrics. These two
BRDFs can be considered as two special cases as our gen-
eral pBRDF. For simplicity, we only render a sphere under
uniform illumination. For the conductor, we use the refrac-
tive index of gold and set the roughness r = 0.1. For the
dielectric, we set the refractive index ior = 1.5, the diffuse
albedo a = [0.5, 0.5, 0.5], and the roughness r = 0.5. As
shown in Fig. 1, the rendered results of our renderer are
consistent with Mitsuba 3. The error on the sphere’s bound-
ary mainly comes from the aliasing problem.

C. Neural Fields
As briefly mentioned in the main paper, the training is di-

vided into the geometry initialization and joint optimization
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Figure 1. The rendering results between our renderer (denoted as “Torch” in the figure) and Mitsuba 3.0 [7].

stages. In this section, we provide a complete description of
these two stages. For each pixel, we cast a single ray along
the current direction ωo. We denote {xj}Nj=1 as N samples
along the ray.

C.1. Geometry Initialization

The geometry initialization stage is a variant of VolSDF
[15]. It consists of three MLPs, which are the SDF net fsdf,
the DoLP net fDoLP, and the outgoing intensity net foi. The
SDF net models the signed distance function:

fsdf(x
j) = dj ,vj (25)

where dj is the signed distance from the nearest surface,
vj is the feature vector. For simplicity, we omit the cosine
embedding [10] in equations. The normal nj of the sampled
point xj is the gradient of fsdf:

∇xjfsdf(x
j)

||∇xjfsdf(xj)||2
= nj . (26)

The DoLP net fDoLP models the appearance of the DoLP
ρj . Because the DoLP is a view-dependent property, the
direction information ωo must also be given to the MLP:

fDoLP(x
j ,ωo,n

j ,vj) = ρj . (27)

Similar to the original VolSDF [15], we also model the in-
tensity as a position and view-dependent function:

foi(x
j ,ωo,n

j ,vj) = Ij . (28)

The final DoLP and intensity are computed via alpha-
blending:

ρ =

N∑
j=1

wjρj , (29)

I =

N∑
j=1

wjIj (30)

The weight wj is computed via:

wj = T j(1− exp (−σjδj)), (31)

where

T j = exp (−
j−1∑
l=1

σlδl), (32)

δ is the distance between two adjacent samples. σ is the
density, following VolSDF [15], we model it as:

σj = γΨβ(d
j), (33)

where Ψ is the cumulative distribution function of the
Laplace distribution. γ and β are two learnable parameters.

C.2. Joint Optimization

The joint optimization stage consists of eight MLPs. The
SDF net fsdf is initialized by the geometry initialization
stage, and will continue to be trained in the joint optimiza-
tion stage. The normal nj is still computed using Eq. 26.
The BRDF fields have four MLPs:

falb(x
j) = aj , (34)

frough(x
j) = rj , (35)

feta(x
j) = ηj , (36)

fk(x
j) = kj , (37)



which estimates the albedo aj , the roughness rj , the real
part of the refractive index ηj , and the imaginary part of the
refractive index kj of the point xj . The parameters used for
rendering are computed using alpha-blending:

n =

N∑
j=1

wjnj , (38)

a =

N∑
j=1

wjaj , (39)

r =

N∑
j=1

wjrj , (40)

η =

N∑
j=1

wjηj , (41)

k =

N∑
j=1

wjkj . (42)

Following NeISF [9], we model the lighting as incident
Stokes fields, which consists of three MLPs:

fii(x,ωi) = sr
spec[0] = sr

dif[0], (43)

fspec(x,ωi) = sr
spec[1, 2], (44)

fdif(x,ωi) = sr
dif[1]. (45)

where sr
spec[0] and sr

dif[0] are the first element (unpolarized
intensity) of the incident Stokes vectors of the specular and
diffuse polarization. They should have the same value, thus
we use a single MLP fii to model them. fspec models the
second and third elements of the incident Stokes vectors of
the specular polarization term. fdif models the second ele-
ment of the incident Stokes vector of the diffuse polarization
term. Note that for the diffuse polarization term, modeling
the third element is meaningless. Because it will be can-
celed out in our polarimetric rendering equation 10. After
estimating all parameters, we render the outgoing Stokes
vectors using the pBRDF defined in Sec. A.

D. Datasets
D.1. Synthetic

Our synthetic dataset was rendered by Mitsuba 3 [7].
Following NeISF [9], we placed the object inside a mod-
ified Cornell Box [5]. Specifically, we set the roughness
of the wall to small values (less than 0.1), so that light
can bounce many times and becomes polarized before in-
teracting with the object. The scene setup was designed to
mimic our daily indoor scenes, where light bounces mul-
tiple times before interacting with the object. The object
contains both dielectrics and conductors. For the dielectric
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Figure 2. Examples of the proposed real and synthetic dataset.

part, we used polarized plastic pBRDF plugin as the ma-
terial model. The refractive index was set to 1.5, and the
specular coefficient was set to 1.0. The diffuse albedo and
roughness were provided by texture maps. For the conduc-
tor part, we use the rough conductor pBRDF plugin as the
material model. The specular coefficient was set to 1.0, and
the complex reflective index was provided by some prede-
fined reflective index for conductors like gold, sliver, and
copper. For the geometry, we used objects from Stanford
3D scan dataset [4] and some open-sourced 3D objects. We
used two light sources in our scene: one was the area light
under the ceiling, and the other was the distant light pro-
vided by the environment map. For each object, we ren-
dered 110 images. Each image contains a 9-channel Stokes
vectors map, a 3-channel surface normal map, a 3-channel
albedo map, a 1-channel roughness map, a 6-channel refrac-
tive index map, a 1-channel object mask, and a 1-channel
conductor-dielectric mask. The cameras were uniformly
distributed on the hemisphere around the object. We used
100 images for training and 10 images for testing. The res-
olution for the synthetic dataset is 700 × 700, and we ren-
dered 4096 samples per pixel. Examples of our dataset can
be found in Fig. 2.

D.2. Real-world

Because the capturing setting of real data is almost the
same as NeISF [9], this section is heavily borrowed from
it. Images of the real-world dataset were captured by a
FLIR BFS-U3-51S5PC-C polarization camera with a Sony
IMX250MYR sensor. For each viewpoint, we captured
eight images with the exposure time [4, 8, 16, 32, 64, 128,
256, 512] ms. Then, we composite them to obtain one HDR
image IHDR in the raw image domain. We apply the al-
pha blending to minimize the noise in the composited image
IHDR as below.



IHDR = α · gshort · Ishort + (1− α) · glong · Ilong, (46)

where Ishort and Ilong are intensities of a short-exposure
and a long-exposure image, respectively. gshort and glong
are gain values to equalize the level of each image. These
are calculated from the ratio of the exposure time. We
get the optimal weight α by minimizing the noise variance
σ2
HDR. This can be represented using noise variances of two

images, σ2
short, σ

2
long,

σ2
HDR(α) = α2 ·g2short ·σ2

short+(1−α)2 ·g2long ·σ2
long. (47)

Note that our main paper uses σ as density in Eq. (9). How-
ever, we denote σ2 as noise variance in this section. The
optimal weight α̂ that minimizes Eq. 47 can be simply ob-
tained by solving:

∂σ2
HDR(α)

∂α
= 0. (48)

The optimal weight α̂ is:

α̂ = argmin
α

σ2
HDR(α) (49)

=
g2long · σ2

long

g2short · σ2
short + g2long · σ2

long

. (50)

Here, the variances of noise in the raw image, σ2
short, σ

2
long,

are assumed to follow a shot noise model where the noise
variance has a linear relationship with the expected intensity
µ [16],

σ2 = a · µ+ b. (51)

Parameters a and b can be estimated by fitting the mean
intensity and variance obtained from a series of raw images
of a scene with different brightness to Eq. 51. Thus, we can
estimate the noise variance of the raw image by substituting
the intensity I to Eq. 51. We recursively apply Eq. 46 to
expand to eight images’ composition.

After demosaicing, we can get four polarized images
with the polarization angle [0◦, 45◦, 90◦, 135◦], and we de-
note them as Î0, Î45, Î90, Î135. The Stokes vectors ŝ can be
calculated as follows:

ŝ[0] = (Î0 + Î45 + Î90 + Î135)/2, (52)

ŝ[1] = Î0 − Î90, (53)

ŝ[2] = Î45 − Î135. (54)

For each object, we took roughly 90 viewpoints for train-
ing and 2-4 viewpoints for evaluation. The resolution of the

captured Stokes vectors is 1224 × 1024. Due to the lim-
ited computational resources, we re-scaled the resolution to
612 × 512 before training. In addition, we manually cre-
ated an object mask and a conductor-dielectric mask using
Photoshop [1] for each viewpoint. The camera poses were
calculated by COLMAP [12, 13].

E. Additional Results
The ablation study of polarization cues To show the con-
tribution of the polarization cues, we conduct experiments
on an ablated model that does not have access to the po-
larization cues. We name this ablated model “Ours-unpol”.
Because this model can not access polarization cues, the ge-
ometry initialization stage is the original VolSDF [15]. For
the joint optimization stage, fspec and fdif are removed. The
outgoing intensity s[0] is rendered by the following equa-
tions:

s[0] = sdif[0] + sspec[0] (55)

sdif[0] =

∫
Ω

a
π
T+
o T

+
i sr

dif[0] cos θi dωi, (56)

sspec[0] =

∫
Ω

ks
DGR+

4 cos θo
sr

spec[0] dωi. (57)

We show the geometry and material reconstruction results
by comparing the synthetic data in Fig. 3 and real data in
Fig. 4.
Novel view synthesis results Another important applica-
tion of inverse rendering is novel view synthesis. In Fig.
5, we demonstrate our re-rendered results compared with
views that were not shown to the model during training. It is
observed that our method can reconstruct high-quality sur-
face reflections even for glossy areas.

F. Implementation Details
F.1. Sphere sampling

The polarimetric rendering equations 2, 3 are solved by
a fixed Fibonacci sphere sampling:

s =
2π

|SL|
∑
SL

Rcam
dif ·Mdif · sr

dif +Rcam
spec ·Mspec · sr

spec, (58)

where SL is the set of the sampled incident light over the
hemisphere.

F.2. Ray marching algorithm

The light-object interaction point is calculated using a
ray marching algorithm. Given the ray origin ro and the
direction rd, we iteratively march the ray to compute the
interaction point x using Algo. 1. The number of steps is
hard coded as 100 for both training and inference.
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Figure 3. Ablation study of the contribution of polarization cues on the synthetic data. It is shown that without polarization cues, the
accuracy of geometry and material reconstruction is much worse than our method.

F.3. Network architecture

We show the network architecture of the geometry ini-
tialization in Fig. 6, and the joint optimization in Fig. 7.
The dimension of positional encoding [10] is set to 6 for
all networks. The signed distance network fsdf is directly
taken from VolSDF [15]. The left networks are modified
from NeILF++ [17]. The output dimension for fDoLP, foi,
falb, fii, fdif, feta, fk are 3, for frough is 1, and for fspec is 6.

F.4. Training details

We define all pixels from the foreground are trained once
as one epoch. The geometry initialization stage was trained
for 20 epochs, and the joint optimization stage was also
trained for 20 epochs. The batch size was set to 2,048,
and we used Adam [8] optimizer with a learning rate set
to 5e-4 and decayed exponentially to 5e-5. For the joint
optimization stage, We clipped the gradient norm of the
signed distance field net fsdf with the maximum norm set
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Figure 4. Ablation study of the contribution of polarization cues on the real data.
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Figure 5. Novel view synthesis results.

to 0.1. The number of samples along a ray is set to 64.
The number of sampled incident rays of each interaction
point is 128. For the weights of the training losses. In
the geometry initialization stage, we set the DoLP weight
λρ = 10, the intensity weight λI = 0.5, and the weight for
the Eikonal regularization λEik = 0.1. In the joint optimiza-
tion stage, we set the DoLP weight λρs

= 5, the Stokes
vectors weight λs = 1, and the weight for the Eikonal regu-
larization λEik = 0.1. However, due to the sensor’s design,

Algorithm 1 Ray Marching Algorithm
1: t← 0
2: for step = 1 to max step do
3: x← ro + t · rd
4: t← t+ fsdf(x)
5: end for
6: x← ro + t · rd
7: return x

we observe a strong noise on the DoLP images for the real
data, especially for the specular reflection. Because pixels
in polarization sensors have a larger Bayer pattern than the
conventional RGB sensor. Thus, we empirically reduce the
DoLP weight λρs

to 0 or 0.5 for real-world data according
to the noise level.
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