
Supplementary Material for
Noise Modeling in One Hour: Minimizing Preparation Efforts for

Self-supervised Low-Light RAW Image Denoising

A. Quantum efficiency of modern imaging sensors
Here, we present the typical fill-factor-included spectral-averaging quantum efficiency (QE) of modern imaging sensors.
Specifically, we plot the QE values of 393 different camera models sourced from DxOMark1 and summarized by Photons
to Photos2. As illustrated in Fig. A, a dominant portion of sensors exhibits QE values in the range of (30%, 70%). Another
noteworthy observation is that sensor models with QE values lower than 30% were typically released before (or around) the
year 2010. This timestamp marks a transition from front-illuminated CMOS sensors to back-illuminated counterparts, leading
to a substantial increase in QE. To conclude, the analysis of QE reinforces our hypothesis-based shot noise synthesis method
as being generally applicable, particularly for modern sensors.
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Figure A. Quantum efficiency statistics of different-brand imaging sensors. There are 393 data points in total, with 204 representing models
released later than the year 2010. Although some data points appear to be outliers (e.g., there unlikely exists a CMOS sensor with a 100%
QE), we keep them in the plots to stick to the original data.

B. Importance of different noise components
Here, we study the importance of different components in noise synthesis for training the denoising network. We use the SID
and ELD datasets for experimental setup and disable different noise components during noise synthesis. As summarized in
Table A, neither shot nor signal-independent noise can be omitted from the noise synthesis pipeline, otherwise, the denoising
performance would diminish significantly. Also, dark shading plays an important role in improving the denoising accuracy.

1https://www.dxomark.com/
2https://www.photonstophotos.net/Charts/Sensor_Characteristics.htm
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Table A. Denoising performance w.r.t. different noise components used during synthesis.

Noise component used in synthesis SID ELD

Photon shot noise Sampled dark frame Dark shading correction PSNR SSIM PSNR SSIM

✓ 39.81 0.9182 44.95 0.9613
✓ 39.95 0.9412 44.90 0.9708

✓ ✓ 40.14 0.9438 45.49 0.9786
✓ ✓ 40.37 0.9436 45.60 0.9788

✓ ✓ 38.12 0.8922 44.16 0.9673

✓ ✓ ✓ 40.85 0.9478 46.43 0.9834

C. More denoising results
We present more qualitative denoising results achieved with our noise synthesis pipeline. As illustrated in Fig. B, our
proposal can help the denoising network effectively smooth real-world noisy images in various scenarios without losing many
high-frequency details.
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Figure B. Qualitative denoising results achieved by our proposed method on distinct datasets. All images are brightness-adjusted via a digital
gain, and gamma-corrected for better visualization.
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