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Supplementary Material

In this supplementary material, we present additional tech-
nical details and experimental results. Specifically:
• We further provide detailed architectural designs of am-

plitude mamba and phase mamba along with the formu-
lation of the core S6 algorithm and the detailed inference
process of OSMamba with Dual-Domain Prior Generator.

• We provide additional ablation studies on the scan direc-
tion as well as the amplitude and phase mamba.

• We showcase additional visual comparisons on LCDP,
MSEC, and SICE datasets with highlighted regions that
compare the correction results among different methods.

A. More Details of Proposed Method

A.1. More Details of Amplitude and Phase Mamba
In this section, we further elaborate on the details of am-
plitude mamba and phase mamba. The key insight of our
method lies in utilizing Omnidirectional Spectral Scanning
(OS-Scan) to convert 2D amplitude and phase spectrum
into 1D sequences while preserving correlations in all di-
rections. These sequences are then modeled and modu-
lated through the S6 mechanism. Omnidirectional Spec-
tral Merging (OS-Merge) reconstructs the modulated se-
quences back into a 2D spectrum. The specific process
is as follows: Initially, the amplitude spectrum or phase
spectrum is processed through a linear projection followed
by depth-wise convolution and SiLU activation function to
enhance local feature representation. The channels of the
spectrum are then divided into four equal parts. Each part
is then processed using one of four distinct scanning or-
ders in the OS-Scan. Specifically, these frequency segments
are transformed into sequences along predefined traversal
paths, which are then processed in parallel through the S6
mechanism. The processed sequences are subsequently re-
constructed and combined via OS-Merge to obtain the out-
put spectrum. This design ensures that each frequency point
can effectively integrate information from all other points
across the spectrum, establishing comprehensive global re-
ceptive fields in the frequency domain. The formulation for
both amplitude and phase mamba structures is defined as:

X′ = SiLU(DWConv(Linear(Xin))),

Xout = LN(OS-Merge(S6(OS-Scan(X′)))),
(1)

where Xin,Xout ∈ RH×(W
2 +1)×D, with H , W , and D rep-

resenting the height, width, and number of channels in the
frequency domain, respectively.

Algorithm 1 S6 mechanism [1]
Input: x : (HW,C)
Output: y : (HW,C)

A : (C,N)← ParameterA
B : (HW,N)← LinearB(x)
C : (HW,N)← LinearC(x)
∆ : (HW,C)← log(1 + exp(Linear∆(x) +Parameter∆))
A : (HW,C,N)← exp(∆⊗A)
B : (HW,C,N)←∆⊗B
y ← SSM(A,B,C)(x)

return y

A.2. More Details of S6 mechanism

In this section, we further elaborate on the technical details
of the S6 mechanism [1], which serves as the core compo-
nent in our amplitude and phase mamba designs. As shown
in Algorithm 1, the S6 mechanism introduces a state di-
mension N and processes the input tensor x ∈ RHW×C

through a state space approach. The parameters B, C, and
∆ are computed dynamically based on the input sequence,
enabling the mechanism to adaptively model diverse tempo-
ral patterns. The state space formulation of S6 brings two
key advantages: the computational complexity scales lin-
early with the sequence length, making it highly efficient
for processing long sequences; moreover, its recursive state
updates enable effective modeling of dependencies between
any two positions in the sequence, regardless of their dis-
tance. These properties make S6 a powerful tool for 1D se-
quence modeling. Through the OS-Scan operation, both the
amplitude spectrum and phase spectrum are converted into
1D sequences, allowing us to leverage these advantageous
properties of the S6 mechanism. The efficient sequence
modeling capability of S6 proves especially beneficial for
capturing and preserving long-range spectral relationships
in both amplitude and phase domains.

Algorithm 2 Inference Process of OSMamba
Input: Exposure-error images Ierror.
Output: Corrected images Icorrected.

ẐT ∼ N (0, I)
D = DDPE*(Ierror)
for t = T to 1 do

Ẑt−1 = 1√
αt

(
Ẑt − 1−αt√

1−ᾱt
ϵΘ(Ẑt, t,D)

)
end for
Return Icorrected = UNet(Ierror, Ẑ0).



Setting Model Type PSNR SSIM

(a) Convolution 24.32 0.8760
(b) Attention 24.37 0.8765

OSMamba OS-SSM 24.53 0.8773

Table 1. Ablation Study on the Amplitude and Phase Mamba.
The Amplitude and Phase Mamba is replaced with either a Con-
volution block (two ReLU-activated 1× 1 convolutions) [2] or an
Attention [3] for comparison.

A.3. More Details of Inference Process

During inference, we leverage the Dual-Domain Prior Gen-
erator (DDPG), which consists of a Dual-Domain Prior Ex-
tractor* (DDPE*) and a denoising network ϵΘ, to gener-
ate diffusion prior. The process begins by sampling a ran-
dom Gaussian noise ẐT ∼ N (0, I) as the starting point.
The DDPE* processes the image with exposure-error Ierror
in both spatial and frequency domains to extract compre-
hensive prior information D, which serves as the condition
for our diffusion model. This sampling strategy effectively
eliminates the dependency on Igt. Through T iterative de-
noising steps, the model ϵΘ progressively refines the ini-
tial noise ẐT into Ẑ0 following the degeneration-free distri-
bution of priors extracted from ground truth image, where
each step is conditioned on D. Each step follows a learned
reverse diffusion process, where the noise is gradually re-
moved according to the schedule defined by αt. This gener-
ative prior is then injected into the Omnidirectional Spectral
SSB (OS-SSB) blocks of UNet, where it further guides the
network to recover fine details in severely degraded regions
that remain challenging to restore after OS-SSM modula-
tion, ultimately producing the corrected image Icorrected.

B. More Ablation Experiment

To validate the effectiveness of the Amplitude and Phase
Mamba, we conduct experiments by replacing them with
alternative components, as shown in Table 1. In setting (a),
when replacing the Amplitude and Phase Mamba with Con-
volution blocks [2], the PSNR drops by 0.21dB compared to
OSMamba. This degradation can be attributed to the limited
receptive field of convolutions, which fails to establish ef-
fective dependencies between spectral components. In set-
ting (b), substituting the Mamba modules with Attention [3]
leads to a 0.16dB decrease in PSNR, demonstrating that our
proposed OS-SSM is more effective than the classical linear
attention mechanism for modeling spectral relationships.

In setting (a) of Table 2, we extend the four-directional
OS-Scan with their reverse directions, obtaining eight-
directional scanning. However, the experimental results
show that adding reverse scanning directions yields no im-
provements in PSNR. This indicates that the forward scan-
ning directions are sufficient to capture the essential spectral

Setting Scan Type PSNR SSIM

(a) OS-Scan w/ Reverse Direction 24.51 0.8775
OSMamba OS-Scan w/o Reverse Direction 24.53 0.8773

Table 2. Ablation study on scan direction. Comparison between
OS-Scan with and without reverse direction.

dependencies, while the reverse directions provide redun-
dant information. Therefore, we adopt the more efficient
four-directional OS-Scan without reverse scanning in our
final model.

C. More Visual Comparisons
Figures 1, 2, and 3 show more visual comparison results on
the mixed-exposure error dataset LCDP, multi-exposure er-
ror dataset MSEC and multi-exposure error dataset SICE,
respectively. To facilitate comparison, we highlight re-
gions with significant differences using red boxes, where
our method demonstrates superior performance in preserv-
ing details and correcting exposure errors.
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Figure 1. More Visual comparison of our method against state-of-the-art approaches on the mixed-exposure error dataset LCDP.
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Figure 2. More Visual comparison of our method against state-of-the-art approaches on the multi-exposure error dataset MSEC.
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Figure 3. More Visual comparison of our method against state-of-the-art approaches on the multi-exposure error dataset SICE.
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