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Supplementary Material

1. Input Details

We outline the complete input language and ground-truth
supervision in Section3.3.2:

Input(a): “Predict the contact point and orientation for
manipulating the object. The hints in the image include the
contact point with a blue dot. Specifically, the contact point
is at ag.”

Input(b): “Predict the contact point and orientation for
manipulating the object. The hints in the image include a
blue dot for the contact point and a red line for the gripper
z-axis 2D direction. Specifically, the contact point is at af),
and the gripper z-axis 2D direction is aj.”

Input(c): “Predict the contact point and orientation for
manipulating the object. The hints in the image include a
blue dot for the contact point, a red line for the gripper z-
axis 2D direction, and a green line for the gripper y-axis
2D direction. Specifically, the contact point is at af), the
gripper z-axis 2D direction is ag, and the gripper y-axis 2D
direction is aj.”

Input(d): “Predict the contact point and orientation for
manipulating the object. The hints in the image include a
blue dot for the contact point, a red line for the gripper z-
axis 2D direction, a green line for the gripper y-axis 2D
direction, and a yellow line for the moving 2D direction.
Specifically, the contact point is at af,, the gripper z-axis 2D
direction is af, the gripper y-axis 2D direction is af, and the
gripper moving 2D direction is ag’.”

Ground truth: “The contact point is at a5, the gripper z-
axis 3D direction is aZ ', the gripper y-axis 3D direction is

’ . . . . ’
ay", and the moving 3D direction is a}!".”

2. Data Collection Details

The size of the training dataset is around 10,000. Regarding
the variation between training and testing data, the specific
variations can be divided into two aspects: 1) asset variation
and 2) camera view variation.

Asset Variation: We use 20 categories from PartNet-
mobility [1] for seen objects and reserve the remaining 10
categories for unseen objects to analyze whether Crayon-
Robo can generalize to novel categories. Specifically, we
further divide the seen objects into 1,037 training shapes
and 489 testing shapes, using only the training shapes to
construct the training data. Thus, the shapes of the seen ob-
jects encountered during training and testing are different.
For unseen categories, there are a total of 274 shapes, which
are used exclusively in the testing data.

Camera View Variation: We observe the object in
the scene from an RGB-D camera with known intrinsics,
mounted 4.5 to 5.5 units away from the object, facing its
center. The camera is located in the upper hemisphere of
the object with a random azimuth between 45 and -45, and
arandom altitude between 30 and 60. We initialize the start-
ing pose for each articulated part randomly between its rest
joint state (fully closed) and any position up to half of its
joint state (half-opened). In both the training and testing
phases, the object is placed and captured randomly within
the aforementioned scope.

3. Details of RT-Trajectory Replication

Since the code for RT-Trajectory is not publicly available,
we replicate its method based on the paper’s description.
During data collection in the simulator, we record the 3D
position of the end-effector and project it onto the camera
frame to create the corresponding 2D trajectory. Given that
the tasks are atomic, consisting of a single step (e.g., open-
ing a door), color grading is unnecessary. Instead, we mark
the start and end positions, as well as the gripper state, by
drawing blue and green circles, respectively.

We use the same backbone as in our model, the LLaMA-
adapter, and fine-tune it to process both the trajectory im-
age and the current object image. This allows the model to
output the 6DoF poses required to complete the tasks. The
same training and testing splits are applied, resulting in an
average success rate of 0.57 on seen categories and 0.52
on unseen categories for RT-Trajectory, while our model
achieves 0.74 and 0.72, respectively.

Further investigation reveals that in our replication of
RT-Trajectory, while the method accurately captures the
end-effector’s trajectory position, the rotation estimation
is not precise enough for interacting with articulated ob-
jects. Unlike tasks such as pick-and-place, where the end-
effector’s rotation is relatively uniform, interactions with ar-
ticulated objects demand more diverse and complex rota-
tional adjustments, making it challenging for RT-Trajectory
to learn effectively. This also highlights the need to provide
directional prompts for the model to interpret.

4. Visual Demonstration of Typical Atomic
Tasks

In Figure. 1, we demonstrate how the key-frame tasks dis-
cussed in Section 3.4.1 are executed. We focus on the “ro-
tation button” task, which is unique because it does not in-
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Figure 1. The completion of tyical key-frame tasks.

volve the translation of the end effector but rather the rota-
tion of the last joint. Using visual prompts from two key
frames, we predict two poses. By analyzing the predicted
poses, we observe that the only difference between them is
the orientation of the end effector along the y-axis. We then
pass these predictions to the ROS package for inverse kine-
matics (IK) computation, which allows us to achieve the
desired rotation effect at the last joint.

5. The Effectiveness of Each Loss.

Lr Lo Lp | Seen Unseen
Ex1 v - - 0.68 0.57
Ex2 v v - 0.71 0.70
Ours | vV v v 0.74 0.72

Table 1. The effectiveness of each loss

In Table. 1, we progressively introduce each loss objec-
tive during training: Ex1 involves training solely with Lr;
Ex2 combines L7 with Lo; and Ours integrates L with
both Lo and L p. Comparing Ex2 and Ex1, we observe that
incorporating £ enhances accuracy by explicitly enforcing
the orthogonality constraints between the z-axis and y-axis
directions. Furthermore, the addition of £ p in Ours results

in a further accuracy improvement compared to Ex2, show-
ing its effectiveness in capturing the correlation between 2D
prompts and 3D directions.

6. Failure Analysis

We analyze the failure cases in real-world: for the push but-
ton step in the open microwave task, the excessive reactive
force during button pressing prevented the robotic arm from
completing the push successfully. For the slide lever step in
the heat toaster task, the gripper fingers we use are too short,
which sometimes prevent them from firmly contacting the
lever during movement.
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