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6. Appendix section
6.1. More training details
In our experiment, we utilize the AdamW optimizer with a
base learning rate of 5e−4 and a weight decay of 0.01 to
ensure effective optimization while maintaining regulariza-
tion. As to the image backbone ResNet-50, which is pre-
trained by torchvision, we scale its learning rate by a factor
of 0.1. The learning rate schedule follows a Cosine Anneal-
ing policy, combined with a linear warmup over the first
500 iterations, starting from one-third of the base learning
rate, and gradually decreasing to a minimum ratio of 1e−3.
For training, we set the number of epochs to 20. This ex-
perimental setup reflects our focus on balancing optimiza-
tion efficiency, model stability, and rigorous evaluation to
achieve reliable and reproducible results.

6.2. More reordering schemes
In addition to the Hilbert curve, other space-filling curves,
such as the Z-order, are also widely used. Therefore, we
conduct comparative experiments, following the procedures
outlined in Sec. 4.1 and Sec. 4.3 on the OpenOccupancy
validation set with v0.0 annotations to evaluate the perfor-
mance of the Z-order. As presented in Table 8, it is ev-
ident that our OccMamba-128 with height-prioritized 2D
Hilbert expansion outperforms the Z-curve variant in se-
mantic occupancy prediction. In theory, the Hilbert curve
effectively preserves the spatial proximity when mapped to
a 1D sequences due to its recursive, space-filling path. In
contrast, the Z-order curve employs a simple interleaving
of bits, which makes it more likely that adjacent points are
separated by greater distances in the 1D sequences. Conse-
quently, the Hilbert curve generally offers superior locality
preservation in multiple dimensions.

Reordering Schemes mIoU

3D Z-order 24.6
3D Hilbert 24.8
Height-prioritized 2D Z-order expansion 25.0
Height-prioritized 2D Hilbert expansion 25.2

Table 8. Performance on more reordering schemes.

6.3. More ablations on local context processor
(LCP)

Metric Specificity. OpenOccupancy’s mIoU does not use
techniques like visual masks, causing ambiguous evaluation
of occluded regions. In Table. 9, LCP improves IoU (denser
occupancy) and RayIoU (from SparseOcc [39], surface ac-
curacy, excluding occlusions) by 1.0% and 0.6% in v0.0

labels, respectively, validating its effectiveness in refining
geometric coherence (Fig. 5(a,b)).
Label Quality Impact. The old OpenOccupancy labels
(v0.0), derived from static LiDAR, suffer from incomplete
annotations for dynamic objects (Fig. 5(c)) and occluded ar-
eas LiDAR never seen. By using new labels (v0.1), our LCP
improves mIoU by 0.4%(Table. 9), demonstrating more
gains as label noise reduces.

(a) w/o LCP (b) w LCP (c) label
Figure 5. Reconstruction results of distant occupancy (about 40m).

Method Label IoU mIoU RayIoU@0.2m
w/o LCP v0.0 33.7 25.0 24.2
w LCP v0.0 34.7 25.2 24.7

w/o LCP v0.1 34.2 25.8 26.5
w LCP v0.1 34.9 26.2 27.0

Table 9. More results of OccMamba-128.
6.4. Ablation on training loss
We conduct an ablation study on the training objectives
mentioned in Sec. 3.4. Specifically, we carry out experi-
ments on the OpenOccupancy dataset, following the pro-
cedures outlined in Sec. 4.1. To facilitate training, we use
only 20% of the training set, with the model configured as
OccMamba-128. The results, as shown in Table 10, indicate
that all the training objectives contribute significantly to the
ultimate performance. In particular, the inclusion of Liou
and LCE yield significant performance enhancements, as ev-
idenced by the increase in mIoU, highlighting their critical
role in our OccMamba.

LCE Liou Ldepth Lgeo Lsem mIoU

✓ 19.2
✓ ✓ 19.5

✓ ✓ ✓ 19.9
✓ ✓ ✓ ✓ 21.7

✓ ✓ ✓ ✓ ✓ 22.9

Table 10. Ablation study on the effect of each training loss.

6.5. More experimental results
Due to space constraints, we put the detailed class-wise per-
formance on the SemanticKITTI dataset in this section. As
shown in Table 11, our OccMamba achieves state-of-the-art
results on SemanticKITTI test set.
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MonoScene [4] C 11.1 54.7 27.1 24.8 5.7 14.4 18.8 3.3 0.5 0.7 4.4 14.9 2.4 19.5 1.0 1.4 0.4 11.1 3.3 2.1
SurroundOcc [46] C 11.9 56.9 28.3 30.2 6.8 15.2 20.6 1.4 1.6 1.2 4.4 14.9 3.4 19.3 1.4 2.0 0.1 11.3 3.9 2.4
OccFormer [52] C 12.3 55.9 30.3 31.5 6.5 15.7 21.6 1.2 1.5 1.7 3.2 16.8 3.9 21.3 2.2 1.1 0.2 11.9 3.8 3.7
RenderOcc [32] C 12.8 57.2 28.4 16.1 0.9 18.2 24.9 6.0 0.4 0.3 3.7 26.2 4.9 3.6 1.9 3.1 0.0 9.1 6.2 3.4
LMSCNet [35] L 17.0 64.0 33.1 24.9 3.2 38.7 29.5 2.5 0.0 0.0 0.1 40.5 19.0 30.8 0.0 0.0 0.0 20.5 15.7 0.5
JS3C-Net [49] L 23.8 64.0 39.0 34.2 14.7 39.4 33.2 7.2 14.0 8.1 12.2 43.5 19.3 39.8 7.9 5.2 0.0 30.1 17.9 15.1
SSC-RS [29] L 24.2 73.1 44.4 38.6 17.4 44.6 36.4 5.3 10.1 5.1 11.2 44.1 26.0 41.9 4.7 2.4 0.9 30.8 15.0 7.2
Co-Occ [31] C&L 24.4 72.0 43.5 42.5 10.2 35.1 40.0 6.4 4.4 3.3 8.8 41.2 30.8 40.8 1.6 3.3 0.4 32.7 26.6 20.7
M-CONet [45] C&L 20.4 60.6 36.1 29.0 13.0 38.4 33.8 4.7 3.0 2.2 5.9 41.5 20.5 35.1 0.8 2.3 0.6 26.0 18.7 15.7

OccMamba-128 (ours) C&L 24.6 68.7 41.0 35.9 9.1 40.8 34.8 8.8 8.8 6.5 8.9 44.9 28.7 40.6 4.2 2.6 0.6 32.0 27.0 23.3

Table 11. Performance on SemanticKITTI test set. The best and second-best are in bold and underlined, respectively.
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