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— Appendix —

We provide implementation details (see Appendix A)
and additional results (see Appendix B) for our TiUE im-
age generation method with loop-free inference. Subse-
quently, we discuss the limitations and future work (see Ap-
pendix C), broader impacts (see Appendix D), ethical
statement (see Appendix E), and reproducibility statement
(see Appendix F).

A. Implementation Details
A.1. Evaluation Datasets and Metrics

Datasets. We conduct comparisons on four datasets to eval-
uate the density of image generation: AFHQ [6], CelebA-
HQ [27], DrawBench [61], and PartiPrompts [81]. Since
the AFHQ and CelebA-HQ datasets contain animals and
human faces respectively, we utilize text prompts with the
format: ”a photo of <cat/dog/wild animal>” and ”a photo
of <man/woman>”.
Metrics. We leverage code from the popular GitHub repos-
itory “StudioGAN” [23–25] 2 to calculate three metrics:
Precision Recall [32], Density, and Coverage [52]. For
FID [17] and Clipscore [16] metrics, we employ the offi-
cial envaluation code from GigaGAN [26] 3

A.2. Baseline Implementations
We use the official implementation of Instaflow [40] 4 ,
LCM [44] 5 , SD-Turbo [64] 6 , and SwiftBrush [53]7. For
SwiftBrushv2 [7], we re-implemented the work using the
same amount of training data and computational resources
as our method. All experiments are conducted at a standard
resolution of 512×512 pixels on a single 3090 GPU device.

A.3. Training Details
We use Stable Diffusion 2.1 (SD 2.1)8 to initialize the
teacher SD generator and SD-LoRA generator, and the stu-
dent generator. We implement our method with PyTorch,
and use the Adam optimizer [30] with β1 = 0.9 and

2https : / / github . com / POSTECH - CVLab / PyTorch -
StudioGAN

3https://github.com/lucidrains/gigagan-pytorch
4https://github.com/gnobitab/InstaFlow
5https://latent-consistency-models.github.io/
6https://github.com/Stability- AI/generative-

models
7https://github.com/VinAIResearch/SwiftBrush
8https : / / huggingface . co / stabilityai / stable -

diffusion-2-1-base

β2 = 0.999 to train both the student generator and SD-
LoRA generator. When calculating the VSD loss Lvsd, we
use classifier-free guidance with a value of 4.5 like Swift-
Brush [53] for both the teacher SD generator and the SD-
LoRA generator.

JourneyDB Datasets. In JourneyDB datasets [54], there
are 4M (4,189,737) captions in the training sets. We remove
duplicate captions from the training set, leaving 1,418,723
unique captions. These captions are used as prompts to
train the student generator. We train our model on NVIDIA
8×A40 48G GPU with batch size 64 and take 3 epochs.

A.4. The Green and Red Arrows in Fig. 4 and Fig. 5
The green arrows indicate the skip connections that transfer
features from the middle layers of the encoder to the corre-
sponding decoder layers, while the red arrows represent the
path where features from the final encoder layer are inputs
to the decoder.

At each time step, the decoder receives both the Mid-
Block outputs and skip-connection features from the en-
coder. Since the Mid-Block does not receive skip-
connection features, it is not shown in Fig. 4 and Fig. 5 and
is considered part of the encoder.

A.5. Meaning of Loop-Free
We regard iterative denoising in the vanilla multi-step DMs
as a “loop” process, while ours does not require any iterative
process. Our method denoises in parallel with 4 decoder
steps, achieving “loop-free” generation.

We further explain Eq. (5) in main paper and pro-
vide a mathematical interpretation of the 1-step inference
for our 1-step encoder and 4-step decoder (i.e., K=4) de-
sign. The student generator ϵSGθ takes as input a random
noise ϵ, also referred to as zK . As shown in Fig. 5, we
only need to calculate skip connections and output fea-
tures of the UNet-Encoder in the initiation step (t=K) as:
f = ϵSG-EN

θ (ϵ,K, y). Then, the predicted noise of UNet-
Decoder at step t (t=4, 3, 2, 1) can be calculated as ϵt =
ϵSG-DE
θ (f, t, y) in parallel. Using the DDIM scheduler, the

latent at step t can be written as:
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Dataset Base
Model Step Param

COCO2014-30K COCO2017-5K Inference↓ Training Data A100
Days↓

Method
Metrics FID↓ CLIP↑ Precision↑ Recall↑ F1↑ FID↓ CLIP↑ Precision↑ Recall↑ F1↑ Time

(ms)
Memory

(GB) Size↓ Image
Free

SD1.5 [58] (cfg=7.5)† – 50 860M 16.08 0.325 0.717 0.527 0.607 23.39 0.326 0.776 0.587 0.668 2503.0 4.04 5B ✗ 4783
SD1.5 [58] (cfg=4.5)† – 50 860M 9.90 0.322 0.727 0.585 0.648 19.87 0.323 0.764 0.649 0.702 2503.0 4.04 5B ✗ 4783
SD2.1 [58] (cfg=7.5)† – 50 865M 16.10 0.328 0.723 0.489 0.583 25.40 0.328 0.769 0.561 0.649 2244.2 3.89 5B ✗ 8332
SD2.1 [58] (cfg=4.5)† – 50 865M 12.22 0.325 0.734 0.526 0.614 22.24 0.298 0.788 0.606 0.685 2244.2 3.89 5B ✗ 8332

FasterD [34] (cfg=7.5)† SD1.5 50 860M 12.93 0.326 0.693 0.532 0.601 23.10 0.325 0.687 0.601 0.641 1476.0 21.83 – – –
FasterD [34] (cfg=4.5)† 50 860M 12.05 0.323 0.672 0.569 0.617 22.32 0.322 0.670 0.638 0.654 1476.0 21.83 – – –

FasterD [34] (cfg=7.5)† SD2.1 50 865M 13.64 0.329 0.708 0.512 0.594 23.65 0.329 0.698 0.572 0.629 1356.0 21.26 – – –
FasterD [34] (cfg=4.5)† 50 865M 12.42 0.326 0.699 0.551 0.616 22.61 0.325 0.707 0.616 0.659 1356.0 21.26 – – –

GigaGAN [26]∗ GAN 1 1.0B 9.24 0.325 0.724 0.547 0.623 – – – – – – – 2.7B ✗ 6250

InstaFlow [40]†

SD1.5

1 0.9B 13.78 0.288 0.654 0.521 0.580 19.00 0.293 0.729 0.613 0.666 111.3 3.99 3.2M ✗ 183.2
LCM [44]† 1 860M 132.09 0.230 0.109 0.194 0.140 143.73 0.229 0.118 0.291 0.168 236.2 5.88 12M ✗ 1.3

LCM-LoRA [45] † 1 860M 115.21 0.280 0.069 0.221 0.105 126.82 0.280 0.070 0.265 0.111 101.4 4.66 12M ✗ 1.3
Hyper-SD [57] † 1 860M 20.90 0.325 0.743 0.324 0.451 30.45 0.325 0.799 0.424 0.554 117.5 4.54 unk. ✗ 33.3

SD-Turbo [64]†

SD2.1
1 865M 19.51 0.331 0.758 0.458 0.571 29.35 0.331 0.786 0.445 0.568 140.0 3.86 unk. ✗ unk.

TCD [86]† 1 865M 68.01 0.301 0.234 0.198 .214 79.15 0.300 0.298 0.339 0.317 103.0 4.43 5B ✗ 7.1
SwiftBrush [53]† 1 865M 17.20 0.301 0.672 0.458 0.545 27.18 0.314 0.729 0.527 0.612 95.0 3.85 1.4M ✓ 4.1

SwiftBrushv2 [7]‡ 1 865M 15.98 0.326 0.782 0.457 0.577 26.28 0.326 0.816 0.543 0.652 139.6 4.91 1.4M ✓ 24.1

LCM [44]†
SDXL

1 2.6B 73.75 0.285 0.277 0.254 0.265 82.74 0.285 0.344 0.384 0.363 661.0 13.84 12M ✗ 1.3
SDXL-Turbo [64]† 1 2.6B 18.98 0.343 0.765 0.413 0.536 29.17 0.343 0.804 0.518 0.630 180.7 9.24 unk. ✗ unk.

SDXL-Lightning [37]† 1 2.57B 20.71 0.331 0.740 0.388 0.509 30.75 0.323 0.760 0.487 0.594 181.2 9.19 30M ✗ unk.

LCM [44]†

SD1.5
4 860M 23.21 0.262 0.666 0.346 0.455 40.37 0.303 0.713 0.460 0.559 592.3 5.88 12M ✗ 1.3

LCM-LoRA [45] † 4 860M 26.06 0.323 0.722 0.312 0.436 36.17 0.322 0.768 0.406 0.531 189.9 4.66 12M ✗ 1.3
Hyper-SD [57] † 4 860M 21.94 0.326 0.742 0.327 0.454 31.73 0.325 0.804 0.430 0.560 221.9 4.55 unk. ✗ 33.3

PCM [73] † 4 860M 21.44 0.316 0.766 0.360 0.490 31.35 0.315 0.770 0.430 0.552 304.3 4.56 3.3M ✗ 2

SD-Turbo [64]† SD2.1 4 865M 16.14 0.335 0.633 0.394 0.468 26,14 0.335 0.694 0.375 0.487 272.2 3.86 unk. ✗ unk.
TCD [86]† 4 865M 18.06 0.319 0.761 0.419 0.540 27.83 0.318 0.795 0.507 0.619 199.2 4.43 5B ✗ 7.1

LCM [44]†
SDXL

4 2.6B 17.66 0.327 0.780 0.408 0.536 27.15 0.328 0.810 0.513 0.628 1074.3 13.84 12M ✗ 1.3
SDXL-Turbo [64]† 4 2.6B 17.79 0.340 0.769 0.431 0.552 27.57 0.341 0.814 0.529 0.641 305.7 9.24 unk. ✗ unk.

SDXL-Lightning [37]† 4 2.57B 19.82 0.322 0.715 0.401 0.514 29.32 0.333 0.782 0.457 0.577 310.9 9.19 30M ✗ unk.

Ours SD2.1 1 865M 13.09 0.313 0.634 0.622 0.628 23.11 0.313 0.697 0.668 0.682 164.7 4.98 1.4M ✓ 2

Table S1. Comparison of our distillation method against other works. Inference Time (ms) and Memory (GB). † indicates that we report
results using the provided official code and pretrained models. ‡ denotes that we re-implemented the work and are providing the scores.
∗ indicates that we report results using the provided generated images. “unk.” denotes unknown. The best and second-best scores are
highlighted in bold and underlined, respectively.
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With Eq. (7), Eq. (8), Eq. (9), and Eq. (10), the inference is
formulated as
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,t∈[2,4]. Since ϵt can be

computed in parallel, we achieve a one-step inference.
This design reduces inference time with one-step sam-

pling, incurs only a minimal increase in memory usage, and
achieves significantly improved generation quality.

A.6. Tab. 2 Explanation
Since DrawBench and PartiPrompts are prompt datasets, we
used the SD2.1 samples as the “GroundTruth”. The FID,
Density, and Coverage metrics computed for the SD2.1
model, when calculated with themselves, are 0 and 1, re-
spectively.

B. Additional Results

B.1. Our Additional Samples

Figs. S1 and S2 show our additional samples conditioned
on 32 random text prompts.

B.2. Diversity Comparison

In Fig. S3 and Fig. S4, we show additional results for the
qualitative comparison of diversity. We observe that both
LCM and SD-Turbo tend to generate images with limited
diversity, while they generate high-quality results. Swift-
Brushv2 is initialized by SD-Turbo, and thus inherits its di-
versity problem. In contrast, we are able to produce more
realistic and diverse results, and close to the ones of SD,
indicating our advantage over the baselines.

For the quantitative comparison of diversity in Tab. 2 of
the main paper, as shown in Fig. S5, our results are closer
to the real images from AFHQ.



Dataset
Base

ModelStep
AFHQ CelebA-HQ DrawBench PartiPrompts

Training
Data

Method
Metrics FID↓ Density↑Coverage↑ FID↓ Density↑Coverage↑ FID↓ Density↑Coverage↑FID↓Density↑Coverage↑ Image

Free

SD1.5 [58] (cfg=7.5)† – 50 47.16 0.066 0.030 93.94 0.053 0.013 11.95 0.510 0.622 7.36 0.730 0.887 ✗
SD2.1 [58] (cfg=7.5)† – 50 51.67 0.053 0.022 89.57 0.018 0.013 0 1 1 0 1 1 ✗

InstaFlow [40]†

SD1.5

1 51.97 0.058 0.029 131.99 0.026 0.007 25.08 0.223 0.337 17.64 0.457 0.670 ✗
LCM [44]† 1 155.63 0.012 0.033 165.74 0.001 0.004 120.98 0.058 0.014 95.65 0.095 0.072 ✗

LCM-LoRA [44]† 1 144.15 0.002 0.001 249.82 0.009 0.001 115.63 0.019 0.014 92.52 0.057 0.077 ✗
Hyper-SD [57]† 1 72.07 0.064 0.018 126.65 0.055 0.013 26.04 0.397 0.385 17.50 0.677 0.530 ✗

SD-Turbo [64]†

SD2.1
1 77.75 0.142 0.033 146.22 0.047 0.006 25.75 0.597 0.488 17.40 0.770 0.775 ✗

TCD [86]† 1 96.00 0.021 0.009 129.86 0.018 0.002 69.46 0.067 0.081 53.35 0.184 0.264 ✗
SwiftBrush [53]† 1 67.60 0.039 0.014 144.03 0.014 0.002 21.48 0.402 0.441 14.43 0.579 0.737 ✓

SwiftBrushv2 [7]‡ 1 64.99 0.110 0.025 131.89 0.055 0.012 18.57 0.682 0.597 11.32 0.850 0.865 ✓

LCM [44]†

SDXL
1 106.39 0.022 0.010 211.19 0.004 0.001 83.97 0.043 0.055 64.31 0.130 0.226 ✗

SDXL-Turbo [64]† 1 77.88 0.004 0.025 261.00 0.002 0.001 32.01 0.602 0.394 17.38 0.791 0.735 ✗
SDXL-Lightning [37]† 1 76.83 0.053 0.008 131.89 0.078 0.013 28.44 0.351 0.340 18.15 0.606 0.672 ✗

LCM [44]†

SD1.5
4 78.00 0.054 0.008 122.44 0.045 0.045 46.23 0.183 0.187 26.84 0.512 0.575 ✗

LCM-LoRA [44]† 4 87.54 0.027 0.005 228.50 0.045 0.006 28.45 0.397 0.362 19.75 0.732 0.694 ✗
Hyper-SD [57]† 4 62.67 0.132 0.031 76.16 0.096 0.020 17.53 0.642 0.569 11.45 0.884 0.853 ✗

PCM [73]† 4 60.02 0.108 0.026 86.90 0.117 0.016 17.38 0.673 0.581 10.74 0.887 0.865 ✗

SD-Turbo [64]† SD2.1 4 77.23 0.011 0.005 193.08 0.013 0.001 27.80 0.281 0.371 22.84 0.500 0.648 ✗
TCD [86]† 4 54.64 0.063 0.024 103.36 0.078 0.014 11.46 0.623 0.431 7.90 0.882 0.922 ✗

LCM [44]†

SDXL
4 78.72 0.136 0.030 120.19 0.060 0.012 24.97 0.431 0.443 16.27 0.682 0.759 ✗

SDXL-Turbo [64]† 4 79.00 0.067 0.027 192.97 0.013 0.010 30.05 0.466 0.373 17.12 0.741 0.742 ✗
SDXL-Lightning [37]† 4 80.23 0.002 0.001 130.76 0.035 0.006 44.52 0.107 0.132 36.12 0.248 0.395 ✗

Ours SD2.1 1 54.48 0.068 0.071 116.82 0.116 0.068 21.10 0.685 0.616 16.28 0.852 0.840 ✓

Table S2. Quantitative comparison of our distillation method with other approaches based on FID, Density, and Coverage metrics to assess
diversity. † indicates that we report results using the provided official code and pretrained models. ‡ denotes that we re-implemented the
work and are providing the scores. The best and second-best numbers are marked with bold and underlined, respectively.

B.3. Iteration Qualitative Results
For a better demonstration of the iterative process, we
present qualitative results at early 6000 steps in Fig. S6.
At 1000 iterations, the model already learned meaningful
texture information (see Fig. S6 (the fifth row)).

B.4. Comparison with Additional SD-based Models
To demonstrate the effectiveness of our distillation method,
we compare it with FasterDiffusion (FasterD) [34], which
shares encoder features at certain adjacent time steps and
performs the decoder in parallel at these steps. FasterD [34]
accelerates 50-step sampling by 1.8x during inference while
maintaining generation quality (FID = 12.42 and 22.61 for
COCO2014 and COCO2017) (see Tab. S1). We further in-
clude the comparison with LCM-LoRA [45]9, PCM [73]10,
Hyper-SD [57]11, and TCD [86]12.

Our method achieves one-step inference while preserv-
ing quality (FID = 13.09 and 23.11 for COCO2014 and

9https://huggingface.co/latent-consistency/lcm-
lora-sdv1-5

10https://github.com/G-U-N/Phased-Consistency-
Model

11https://huggingface.co/ByteDance/Hyper-SD
12https://github.com/jabir-zheng/TCD

COCO2017) and outperforms LCM-LoRA, PCM, Hyper-
SD and TCD across FID, Recall, and F1 evaluation metrics
(see Tab. S1), demonstrating its advantage over traditional
acceleration methods.

B.5. Comparison with SDXL-based Models
We compare our distillation method against other works
based on SD, similar to state-of-the-art methods [7, 53], in
the main paper.

To make a full comparison, we further include SDXL-
based distillation methods, such as LCM (SDXL) [44]13,
SDXL-Turbo [64]14, and SDXL-Lightning [37]15. Note
that the parameter scale of these models exceeds 2.5 bil-
lion, comparing with conventional SD-based models which
are often below 1 billion. Qualitative and quantitative re-
sults are demonstrated in Tabs. S1 and S2, and Fig. S7. As
can be observe that, InstaFlow [40], LCM [44] (1-step),
and SwiftBrush [53] face challenges in generating high-
quality images. LCM [44] (4-step), SD-Turbo [64], SDXL-

13https://huggingface.co/latent-consistency/lcm-
sdxl

14https://huggingface.co/stabilityai/sdxl-turbo
15https : / / huggingface . co / ByteDance / SDXL -

Lightning



Turbo [64], SDXL-Lightning [37], and SwiftBrushv2 [7]
tend to generate results with similar scenes and identities
giving the same prompt, leading to the lack of generation
diversity. In contrast, our results are closer to the genera-
tion quality and diversity of original SD model. Note that,
due to the large amount of parameters of the SDXL model,
distillting them into 1-step models [37] generally requires
8×80GB GPUs with batch size as 8. We aim to develop
more efficient distillation approaches in the future for ex-
tremely large T2I diffusion models to reduce the time and
space complexity.

C. Limitations, and Future Work
The present study focuses on implementing a loop-free
inference with a shared encoder strategy exclusively in
image-free distillation. However, we posit that adopting
this shared encoder strategy in image-dependent distilla-
tion could yield loop-free sampling, thereby enhancing in-
ference speed without compromising on generation quality.
This primarily requires engineering efforts.

D. Broader Impacts
TiUE enhances the semantic binding capability in text-to-
image synthesis by enhancing text embeddings. However,
it also carries potential negative implications. It could be
used to generate false or misleading images, thereby spread-
ing misinformation. If TiUE is applied to generate images
of public figures, it poses a risk of infringing on personal
privacy. Additionally, the automatically generated images
may also touch upon copyright and intellectual property is-
sues.

E. Ethical Statement
We acknowledge the potential ethical implications of de-
ploying generative models, including issues related to pri-
vacy, data misuse, and the propagation of biases. All models
used in this paper are publicly available, as well as the base
training scripts. We will release the modified codes to re-
produce the results of this paper. We also want to point out
the potential role of customization approaches in the gener-
ation of fake news, and we encourage and support responsi-
ble usage of these models. Finally, we think that awareness
of open-world forgetting can contribute to safer models in
the future, since it encourages a more thorough investiga-
tion into the unpredictable changes occurring when adapt-
ing models to new data.

F. Reproducibility Statement
To facilitate reproducibility, we will make the entire source
code and scripts needed to replicate all results presented in
this paper available after the peer review period. We will

release the code for the novel color metric we have intro-
duced. We conducted all experiments using publicly ac-
cessible datasets. Elaborate details of all experiments have
been provided in the Appendices.



Figure S1. Our additional samples.



Figure S2. Our additional samples.



O
u
rs

 (
1
 p

a
s
s
)

L
C
M

 (
1
 s

t
e
p
)

S
D

-T
u
rb

o 
(1

 s
t
e
p
)

I
n
s
t
a
F

lo
w

 (
1
 s

t
e
p
)

S
w

if
t
B

ru
s
h
 (

1
 s

t
e
p
)

S
w

if
t
B

ru
s
h
v
2

‡
 (

1
 s

t
e
p
)

S
D

 (
5
0
 s

t
e
p
s
)

"A small waterfall in the middle of rocks, an airbrush painting"

Figure S3. Diversity comparison. Our results are close to the one of SD.
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Figure S4. Diversity comparison. Our results are close to the one of SD.
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Figure S5. Diversity comparison. Our results are close to the ones of AFHQ.
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Figure S6. Iteration qualitative results.
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Figure S7. Qualitative and diversity comparison. Our results are close to the one of SD.


