
One-for-More: Continual Diffusion Model for Anomaly Detection

Supplementary Material

A. Experimental details

Data pre-processing. We employ the data pre-processing
pipeline specified in DiAD [3] for both the MVTec [1] and
VisA [11] datasets to mitigate potential train-test discrep-
ancies. This involves channel-wise standardization using
precomputed mean [0.485, 0.456, 0.406] and standard devi-
ation [0.229, 0.224, 0.225] after normalizing each RGB im-
age to [0, 1].
Patch perturbation. We adopt the method proposed by
NSA [8] for patch perturbation on the original images.
The NSA method builds upon the Cut-paste technique [4]
and enhances it by incorporating the Poisson image edit-
ing method [7] to alleviate the discontinuities caused by
pasting image patches. The cut-paste method is commonly
used in the anomaly detection domain to generate simu-
lated anomalous images. It involves randomly cropping a
patch from one image and pasting it onto a random loca-
tion in another image, thus creating a simulated anomaly.
The Poisson-based pasting method seamlessly blends the
cloned object from one image into another by solving Pois-
son partial differential equations, thereby better simulating
a realistic anomalous region. In this paper, the number of
patches is set as a random value from 1 to 4, and the patch
size is a random value from 0.03 to 0.4 of the original im-
age size. The visualization of patch perturbation is shown
in Figure 1.

O
ri

g
in

a
l 
im

a
g

e
P

a
tc

h
 p

e
rt

u
rb

a
ti

o
n

Figure 1. Qualitative results of logical anomaly detection.

Evaluation metrics. We follow the literature [1] in report-
ing the Area Under the Receiver Operation Characteristic
(AUROC) for both image-level and pixel-level anomaly de-
tection. To measure the performance of the model in con-
tinuous learning, referring to DNE [5], we calculated the
average AUROC (A-AUROC) and the forgetting measure

(FM) for N continual steps. Specially, we define Apix
N,i and

Aimg
N,i as the test AUROC of task i after training on task N .
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In addition to the results for the AUROC documented in
the body of the paper, We also supplement the image-level
Precision-Recall (AUPR) results and pixel-level Per-region-
overlap (PRO) [1, 2] results. Referring to Equation (1) and
Equation (2), we calculate A-AUPR, A-PRO, and their FM
to evaluate our method. The results are shown in Table 1 2 4
5. Our method still achieves an advanced level in the above
metrics.

B. Memory Analysis of iSVD

In Section 3.2, considering the storage of the original matrix
and U ,Σ,V during SVD, the memory overhead of SVD is
dΛ + d2 + Λ2 + min(d,Λ), while iSVD uses a memory
overhead of d(m+ k) + d2 + (m+ k)2 +min(d,m+ k).
It is known that Λ ≫ d, m > d > k and Λ = mn, thus, the
memory saving rate of iSVD is about:

dΛ + d2 + Λ2 + d− [d(m+ k) + d2 + (m+ k)2 + d]
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(3)
In practice, the actual memory saving rate differs from the
theoretical value due to factors such as memory sharing.
Taking the intermediate features of ten images as an ex-
ample, Figure 2 shows the actual and theoretical memory
saving rate of splitting the feature matrix into n blocks for
iSVD. Although there are some differences between the the-
oretical value and the actual value, the general trend is con-
sistent.



Method 14 – 1 with 1 Step 10 – 5 with 1 Step 3 × 5 with 5 Steps 10 – 1 × 5 with 5 Steps

A-AUPR (↑) FM (↓) A-AUPR (↑) FM (↓) A-AUPR (↑) FM (↓) A-AUPR (↑) FM (↓)

UCAD* [6] 95.8 0.26 95.0 0.98 93.1 2.02 95.5 0.07
IUF [9] 97.8 0.25 95.4 1.92 91.1 2.86 95.3 0.16

ControlNet [10] 97.2 1.55 96.7 1.76 86.7 6.40 89.0 7.43
DiAD [3] 97.4 0.71 96.4 1.85 89.1 4.31 91.4 4.83

CDAD 98.4 0.08 98.3 0.55 95.8 1.88 98.4 0.02

Table 1. Image-level A-AUPR of our method on MVTec under 4 continual anomaly detection settings. The best and second-best results
are marked in blod and underline. ∗ indicates memory limited.

Method 14 – 1 with 1 Step 10 – 5 with 1 Step 3 × 5 with 5 Steps 10 – 1 × 5 with 5 Steps

A-PRO (↑) FM (↓) A-PRO (↑) FM (↓) A-PRO (↑) FM (↓) A-PRO (↑) FM (↓)

UCAD [6] 86.3 1.16 80.7 2.89 71.1 7.48 80.8 1.19
IUF [9] 88.6 0.62 85.0 3.22 72.9 5.79 84.3 2.41

ControlNet [10] 88.5 1.75 85.8 4.70 71.5 10.0 77.9 7.11
DiAD [3] 88.9 0.85 87.4 3.91 72.1 9.23 83.1 2.93

CDAD 89.8 0.47 88.9 2.57 83.8 4.05 89.2 1.16

Table 2. Pixel-level A-PRO of our method on MVTec under 4 continual anomaly detection settings. The best and second-best results are
marked in blod and underline. ∗ indicates memory limited.
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Figure 2. The theoretical and actual values of the memory saving
ratio when the different number of split blocks is used.

In this paper, we determine the number of blocks n ac-
cording to the number of images of the old task. Specifi-
cally, we first sample the old task dataset, randomly retain
10% of the images, and then group according to the num-
ber of sampled images (denoted as Nimg). The number of
groups in iSVD is n =

Nimg

e . In this paper, e is set to 1 by
default, that is, the intermediate features of each image are
divided into a separate group for iSVD operation.

In addition, we analyze the impact of different e on the
model and the time and memory overhead. Table 3 records,
for setting different e, the anomaly detection results of our
model on MVTec setting 2, as well as the time and mem-
ory overhead for computing the significant representation of
the old task. When e is set to different values, the anomaly

A-AUROC FM Memory Times

e=1 94.2 / 95.3 2.05 / 2.40 16.7GB 33.5h
e=2 94.1 / 95.4 2.10 / 2.32 30.3GB 28.3h
e=4 94.4 / 95.6 1.95 / 2.21 57.9GB 22.6h
e=6 94.5 / 95.7 1.91 / 2.23 85.9GB 20.2h

Table 3. The impact of different e on the model and the time and
memory overhead of iSVD under MVTec Setting 2.

detection results and forgetting rate of the model will not
have much influence. Although we discussed in Section 4.5
that the large number of split blocks will affect the perfor-
mance of iSVD, it will not impair its representation abil-
ity of core information, so it can still ensure the continu-
ous learning ability of the model. Table 3 also shows that
with the increase of e, the memory consumption increases,
but the time cost decreases, which indicates that although
iSVD can greatly alleviate the pressure of memory, it will
bring extra time cost.

C. Qualitative Results

We supplement the qualitative results on MVTec and VisA
datasets, which show the localization image reconstruction
results and anomaly localization results for the seven tasks,
respectively, as shown in Figure 3-9. Our method not only
overcomes the “faithfulness hallucination” problem of the
diffusion model but also shows excellent anomaly localiza-
tion results.



Method 11 – 1 with 1 Step 8 – 4 with 1 Step 8 – 1 × 4 with 4 Steps

A-AUROC (↑) FM (↓) A-AUROC (↑) FM (↓) A-AUROC (↑) FM (↓)

UCAD* [6] 88.1 0.29 83.2 5.17 82.9 2.16
IUF [9] 91.6 -0.04 83.4 7.51 83.0 6.87

ControlNet [10] 85.2 2.38 78.8 6.25 72.4 4.56
DiAD [3] 74.9 5.42 70.1 12.29 59.5 9.55

CDAD 89.4 -0.77 85.3 3.1 84.7 1.83

Table 4. Image-level A-AUPR of our method on VisA under 3 continual anomaly detection settings. The best and second-best results are
marked in blod and underline. ∗ indicates memory limited.

Method 11 – 1 with 1 Step 8 – 4 with 1 Step 8 – 1 × 4 with 4 Steps

A-PRO (↑) FM (↓) A-PRO (↑) FM (↓) A-PRO (↑) FM (↓)

UCAD* [6] 80.4 2.02 72.4 7.46 70.5 9.83
IUF [9] 82.0 1.04 63.9 20.8 57.0 23.95

ControlNet [10] 62.3 2.45 61.0 1.81 51.7 10.38
DiAD [3] 69.9 4.33 67.7 8.29 55.0 11.74

CDAD 81.6 -0.22 78.9 1.59 77.7 1.66

Table 5. Pixel-level A-PRO of our method on VisA under 3 continual anomaly detection settings. The best and second-best results are
marked in blod and underline. ∗ indicates memory limited.
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Figure 3. Qualitative comparison results under setting 1 of MVTec, the numbers represent continual training classes.
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Figure 4. Qualitative comparison results under setting 2 of MVTec, the numbers represent continual training classes.
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Figure 5. Qualitative comparison results under setting 3 of MVTec, the numbers represent continual training classes.
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Figure 6. Qualitative comparison results under setting 4 of MVTec, the numbers represent continual training classes.
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Figure 7. Qualitative comparison results under setting 5 of VisA, the numbers represent continual training classes.
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Figure 8. Qualitative comparison results under setting 6 of VisA, the numbers represent continual training classes.
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Figure 9. Qualitative comparison results under setting 7 of VisA, the numbers represent continual training classes.
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