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1. Applications of Our Settings
It is challenging to build a generalized training set that ad-
equately covers all possible environmental conditions, user
behaviors, demographic diversity, and specific clients’ re-
quirements that may sometimes conflict with one another.
For example, consider a scenario where Client A authen-
ticates users through mobile phone-based checks, while
Client B uses entrance kiosks at fixed locations to capture
data from specific angles. These diverse setups introduce
variations in the data capture process, including acquisition
devices, pre-processing techniques, and challenge-response
mechanisms. As a result, there is a domain mismatch be-
tween the client data and the training data used to develop
the host model. This mismatch can be catastrophic for
face anti-spoofing models, as they are particularly sensi-
tive to low-level image features such as task irrelevant noise
and artifacts. In our work, we aim to address the above-
mentioned problem by building a privileged system that al-
lows for lightweight customization at testing stage by either
the host or the client, using only a few labeled samples pro-
vided by the client.
Relation to Classical Domain Adaptation.: Classical do-
main adaptation typically requires explicit access to the
source domain data to align the source and target domains.
However, in many practical scenarios, access to the source
data may be restricted, especially for data involving facial
images. Additionally, since the application is related to se-
curity, host model parameters cannot be explicitly shared
with clients or end-users due to the risks of model theft
or white-box adversarial attacks. Therefore, in our setting,
both the host model parameters and source training data are
not accessible. Instead, only a few data features and pro-
totypes are made available to clients, allowing them to im-
prove the performance for their specific use cases.

2. Interpretation of Geodesic Mix-up
We use optimal transport (OT) to compute intermediate dis-
tributions along the geodesic path between the source and
target data distributions, which are empirically represented
by source prototypes and few-shot client data, respectively.
This geodesic path minimizes the cost of transporting prob-
ability mass while maintaining a smooth transition between
the two distributions. Each intermediate distribution along
this path represents a weighted blend of source and target
characteristics. By sampling from these intermediate distri-
butions, we generate data that can be interpreted as geodesic
mix-up. Geodesic mix-up extends the traditional mix-up
concept by shifting from the feature space to the space of

probability distributions. More specifically, instead of in-
terpolating between individual data points, it interpolates
between entire distributions, offering the following two ad-
vantages:
• The relationships among real data points can be effec-

tively preserved to the synthetic data points, as geodesic
mixup respects the geometric structure of data distribu-
tions.

• Interpolating at the distribution level reduces the impact
of noise and outliers in individual data points.

Training on these samples allows the classifier to learn how
features transition between domains, so that it can adapt to
target-specific characteristics while maintaining its knowl-
edge of the source domain.

Solving Equation 5 will get an intermediate distribu-
tion along the geodesic path between the source and tar-
get distributions. This intermediate distribution represents
a weighted blend of source and target characteristics. The
parameter w ∈ [0, 1] in the equation determines the weight
of the blend: w close to 0 results in a distribution closer to
the source, and w close to 1 results in a distribution closer to
the target. Intuitively, Equation 5 aims to find a distribution
that transitions smoothly between the source and target by
minimizing the transportation cost. If we draw an analogy
to Euclidean space, the source, target, and intermediate dis-
tributions can be thought of as points, and the intermediate
distribution lies on the ”straight line” connecting the source
and target. However, in Wasserstein space, this ”straight
line” corresponds to the geodesic path, which captures the
optimal transport relationship between the distributions, re-
specting their geometric structure and preserving relation-
ships among data points.

3. Additional Visualizations
Here, we provide more visualizations. As demonstrated in
Fig. 1 (left two), OTA (training-free) effectively calibrate
prototypes to adapt to target domain while resisting noisy
samples. Geodesic Mixup (right two) generates diverse
pseudo distributions which respect geometric information
of source and target domains.

4. Scaling Property OTA
Both training-free and lightweight adaptation methods pri-
marily concern few-shot scenarios where the available tar-
get domain data are extremely scarce. In application, it is
possible that the few-shot number is moderate. To this end,
we scale the few-shot number K from 5 to 50 and test OTA
accordingly to evaluate OTA’s scaling property. As shown



Figure 1. Visualization of OTA in the latent space. Left two plots indicating training-free adaptation. Right two plots resemble the
generated synthetic empirical distributions of Geodesic Mixup.

K=5 K=10 K=20 K=50
Avg. HTER↓ Avg. AUC↑ Avg. HTER↓ Avg. AUC↑ Avg. HTER↓ Avg. AUC↑ Avg. HTER↓ Avg. AUC↑

OTA † (training-free) 3.57 99.05 3.21 99.23 3.13 99.27 3.01 99.30
OTA ‡ (lightweight) 3.28 99.29 2.91 99.39 2.82 99.48 1.97 99.65

Table 1. Results of OTA under different few-shot number K.

Require: Source domains {Di}Ni=1,
1: Feature extractor f : X → RD,
2: Target support set Dt = {(xt,j , yt,j)}Mt

j=1,
3: Number of centroids K

Train Stage: Learning Prototype-based Framework
4: Initialize P = {pbona fide,pspoof} ∈ RD×K×2

5: for batch B in source domains do
6: zi = f(xi) for xi ∈ B
7: Compute losses: Lproto, Lcoarse

con , Lfine
con , Lorth

8: Update P and f using combined loss (Eq. 3)
9: end for

Ensure: Learned class prototypes P = {pbona fide,pspoof}
Test Stage: Source-free Few-shot Adaptation
10: Extract features: Zt = {f(xt,j)}Mt

j=1

Proposed Method 1: Training-free OT Adaptation
7: for c ∈ {bona fide, spoof} do
8: Compute Mc

ij = ∥pc
i − ztj∥22; init ac, bc

9: γc∗ = argminγ∈Π(ac,bc)⟨γ,Mc⟩ +λΩα(γ)
10: Optimal Transform: pc∗ = Tγc∗(pc)
11: end for
Ensure: Transformed prototypes P∗ (as classifier)
Proposed Method 2: Lightweight Geodesic mix-up
12: Initialize a random linear classifier l : Z → R2

13: while not reach target iterations do
14: w ∼ Beta(0.4, 0.4)
15: µw = argminµ[wW(µ, µs)+ (1− w)W(µ, µt)]

16: Optimize classifier l on Zt ∪P ∪ {ui}Ki=1
i.i.d.∼ µw

17: end while
Ensure: Classifier l

Figure 2. Detailed algorithms for prototype-based backbone training, training-free OT adaptation and light-weight training with Geodesic
Mixup.

in Table 1, scaling up few-shot number consistently boost
the performance of both training-free and lightweight adap-
tation OTA methods.

5. Detailed Algorithms
Detailed algorithms can be found in Algorithm 2.


