
Appendix

A. Pilot Studies on More Attacks
In this section, we will show the more results of our pi-
lot study in Section 4.1 and a combined method between
MC-Dropout[9] and SCP[14]. We maintain the same experi-
mental setup with pilot study that conduct experiments on
the CIFAR-10 dataset[23] with ResNet-18[17] trained 100
epochs. Apart from Adaptive-Blend[35] attack, which has a
poisoning ratio of 1%, all other attacks maintain a poisoning
ratio of 10%.

A.1. Pilot Study: MC-Dropout Predictive Uncer-
tainty.

As shown in Figure A1, under most attacks, the average MC-
Dropout uncertainty of backdoor training data is significantly
smaller than that of clean data, both lower than clean training
data and clean validation data, and this difference tends to
stabilize in the later stages of model training. However, under
Adaptive-Blend attack, we can observe that the uncertainty
of backdoor training data is even slightly higher than clean
training data. The observations align with the part of our first
pilot study in the main paper Section 4.1, which suggests that
using uncertainty defined by standard deviation alone may
not be sufficient to detect backdoor data in general attack
scenarios.

A.2. Exploring the Potential Synergy: MC-Dropout
and SCP in Combination.

In the Section 4.1 of our main paper, we can observe that
the model’s mapping from trigger to target label in backdoor
data is more salient and robust compared to general image
features. In light of this observation, we hypothesize the
potential factor of the proximity between backdoor training
data uncertainty and clean training data under WaNet[32]
attack can be attributed to the absence of sufficient sabotage
on the image features. We expect that the model’s ability to
extract feature patterns from clean data will be significantly
affected, while that from backdoor data will be minimally
impacted. Consequently, we can enlarge the uncertainty gap
between clean data and backdoor data. One direct method is
to increase the dropout rate p. However, due to our inability
to ascertain the presence or quantity of backdoor data within
the suspicious training dataset, we encounter difficulty in
determining an optimal value for p. Thus, we incorporate
elements of SCP approach to introduce a more controllable
uncertainty with MC-Dropout uncertainty. SCP can be con-
sidered as an instance of input-level uncertainty. It amplifies
the pixel values of input images by multiple times, aiming
to disrupt the feature patterns in the image. Therefore, we
conduct further experiments to see if adding input-level un-
certainty further disrupts the general feature patterns in the
image.

Settings. We only incorporate controllable input-level un-
certainty in our experiments. Specifically, we first amplify
the pixel values of input images by a factor of three follow-
ing SCP. Then we compute the MC-Dropout uncertainty of
these scaled input images in three data types. Our goal is
that controllably increase the uncertainty of the input data,
and deeply disrupt the feature patterns in the image. As an
expected result, the uncertainty of the clean training data
becomes closer to that of the clean validation data, whereas
the backdoor training data uncertainty becomes markedly
distant from them.

Results. As illustrated in Figure A2, under most attack
scenarios, we observe an increase in average uncertainty for
both clean training data and clean validation data, with their
uncertainties nearly overlapping. This will enable us to better
utilize the uncertainty of validation data to approximate the
uncertainty of clean training data. From Figure A2a, we can
observe that the average uncertainty of benign model on the
three data types is significantly increasing after scaling pixel
values. This indicates that the introduction of input-level
uncertainty indeed enhances the model predictive uncertainty
further, and its strength can be easily controlled by adjusting
the multiplicative factor of SCP.

However, under WaNet scenario, one can see from Fig-
ure A2f that although the uncertainty of the clean train-
ing data becomes closer to that of the clean validation data
after scaling, the uncertainty gap between clean training
and backdoor training data further reduces. Furthermore,
as shown in Figure A2e and Figure A2h, under the Label-
Consistence[44] and the Adaptive-Blend attack scenarios,
the backdoor training data exhibits only slightly smaller
uncertainty than that of clean training data, which poses
significant challenges for their differentiation.

Backdoor training data exhibits the same uncertainty as
both clean training data and clean validation data, indicating
a failure in the combination of MC-Dropout uncertainty and
input-level uncertainty. In addition, the scaling factor is a
parameter that is difficult to ascertain when we have a lack of
the knowledge about backdoor attack. Therefore, we cannot
directly utilize this method.

B. Prediction Shift Phenomenon on More Sce-
narios

In this section, we will show the more results of PS phe-
nomenon on the more poisoned models, more architectures,
and more dataset. It demonstrates the broad applicability of
our approach in diverse real-world scenarios. We maintain
the same experimental setup with Section 4.2.
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(c) Label-Consistence
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(d) ISSBA
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(e) Adaptive-Blend

Figure A1. The average MC-Dropout uncertainty of clean training data, backdoor training data and clean validation data under various
poisoned models.
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(a) Benign Model
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(d) TrojanNN

1 20 40 60 80 100
Epoch

0.00
0.03
0.05
0.08
0.10
0.13
0.15
0.18
0.20

M
C-

D
ro

po
ut

 U
nc

er
ta

in
ty clean

backdoor
validation

(e) Label-Consistence
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(f) WaNet
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(g) ISSBA
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(h) Adaptive-Blend

Figure A2. The average MC-Dropout uncertainty combination with input-level uncertainty of clean training data, backdoor training data and
clean validation data under benign and poisoned models.

B.1. PS Phenomenon on More Poisoned Models.

As shown in Figure A3, the shift ratio curve of clean data
maintains consistency across diverse attack scenarios, i.e.,
the shift ratio σ increases with the growth of dropout rate
p and eventually stabilizes. Similarly, the shift ratio curve
of backdoor data also exhibits certain consistency across
various attack scenarios, always presenting a relatively lower
σ at a specific p. This suggests that the PS phenomenon
and neuron bias effect do not depend on the specific type

of backdoor attack, but rather are intrinsic properties of
the model. Furthermore, different attack scenarios lead to
distinct shift ratio curves of backdoor data.

Except for the ISSBA[25] attack, the shift intensity of
clean data is not pronounced. In other attacks, the shift
intensity of clean data is extremely strong. More importantly,
in all attack scenarios, clean data exhibits a bias towards
the target class (class 0 in our experiments). This further
indicates that when the model has good generalizability, the
neuron bias path established by the backdoor data in the
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(c) Label-Consistence
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(e) Adaptive-Blend

Figure A3. The shift ratio curves and shift intensity for more poisoned models.
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(a) Benign Model
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(c) WaNet

Figure A4. The shift ratio curves and shift intensity on Tiny ImageNet for the benign model, BadNets model, and WaNet model, respectively.
Please note thet we only present the results for the top three classes with the highest shift intensity values on Tiny ImageNet.

model becomes more stable and specific. This property
may be exploited in the future to detect the target class of

backdoor attacks.
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(b) BadNets
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(c) WaNet

Figure A5. The shift ratio curves and shift intensity used VGG16-bn architecture for the benign model, BadNets model, and WaNet model,
respectively.

B.2. PS Phenomenon on Tiny ImageNet Dataset.

From the observation of Figure A4, we can find that the PS
phenomenon and neuron bias effect persist even in the more
complex Tiny ImageNet dataset[37].

The shift ratio curve trends for the three data types(clean
training data, clean validation data, and backdoor training
data) in the model trained on the Tiny ImageNet dataset
remain consistent with the trends observed in the model
trained on the CIFAR-10 dataset. Specifically, for the benign
model, the shift ratio σ still increases with the dropout rate p
and eventually stabilizes. For the poisoned models, BadNet
and WaNet, the shift ratio curve for the backdoor data always
presents a relatively lower σ at a specific p.

The key difference is that the PS phenomenon is less
pronounced in the models trained on the Tiny ImageNet
dataset, as evidenced by a significant reduction in the shift
intensity. Additionally, the shift class in these models tends
to be biased towards certain specific classes, rather than the
target class (class 0 in our experiments).

As the more complex features and larger number of
classes in the Tiny ImageNet dataset, the model’s gener-
alization capacity may still be insufficient , despite the use
of data augmentation techniques. We hypothesize that the
inadequate generalization capability results in less stable and
distinct neuron bias paths. This allows a relatively small
p to cause the neuron bias path to overweigh the normal
feature path, resulting in the presence of PS phenomenon
in clean data, but without a strong neuron bias towards the
target class. Meanwhile, the backdoor data remains rela-
tively stable and almost does not exhibit the PS phenomenon.
Our method effectively leverages the key difference in the
PS phenomenon between clean data and backdoor data to
enable the effective detection of backdoor data.

B.3. PS Phenomenon on VGG Architecture.

Despite assuming that the defender can freely choose the
model architecture, we also conducted experiments using
the VGG16-bn[39] model to show that our method is not de-
pendent on any specific model architecture. The experiment
was conducted as follows Section 4.2.

The results presented in Figure A5 demonstrate that the
PS phenomenon is also evident within the VGG architecture,
similar with the observations made in the main paper for
the ResNet-18 model. Notably, a certain degree of PS is
also present even in the benign model, affecting both the
clean training data and the clean validation data. Consistent
with the findings under the BadNet and WaNet attacks, there
still exist specific dropout p that can cause the clean data to
exhibit a strong PS phenomenon while that of backdoor data
is extremely weak.

The findings align with our conclusion that the PS phe-
nomenon and neuron bias effect are widely prevalent in
DNNs, rather than being specific to particular model archi-
tectures. While the variations in model architecture may
result in different shift ratio curves and shift intensity, they
do not impact the existence of the PS phenomenon and neu-
ron bias effect.

C. Detailed Results of Neuron Bias Effect

In this section, we present the more complete results of the
“neuron bias” effect on the BadNets and WaNet models. As
illustrated in Figures A6 and A7, there is a pronounced and
widespread presence of the neuron bias effect. This confirms
our hypothesis that the PS Phenomenon is a result of the
neuron bias effect.
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Figure A6. The all 512 activation maps extracted by the top layer of the BadNets model with dropout. The red boxes represent the feature map values are
non-zero and the difference between each activation value in the clean and backdoor feature maps is no greater than 1. The features of clean and backdoor
image become almost identical with dropout, verifying the existence of neuron bias effect.

0.0

0.2

0.4

0.6

0.8

1.0

Activation Value

(a) Clean Image

0.0

0.2

0.4

0.6

0.8

1.0

Activation Value

(b) Backdoor Image

Figure A7. The all 512 activation maps extracted by the top layer of the WaNet model with dropout. The features of clean and backdoor image become more
identical with dropout, verifying the neuron bias effect is not limited to specific attack.

D. Experiments Details

D.1. Detailed Settings for Datasets and Training of
Backdoored Models.

The details of datasets and training procedures of DNN mod-
els in our experiments are summarized in Table A1 and
Table A2. Note that clean validation data refers to the clean
data we used to filter backdoor training data, which was
5% of the total quantity of whole training dataset randomly
selected from the test set of CIFAR-10 and GTSRB[40], and
the validation set of Tiny ImageNet, respectively.

D.2. Implements of Backdoor Attacks.

BadNets, TrojanNN[28], and Blend[6] correspond to typi-
cal all-to-one label-poisoned attacks with patch-like trigger,
generated trigger, and blending trigger respectively. Label-
Consistent is a representative clean label attack. WaNet is
an image transformation-based invisible attack. ISSBA is
an effective sample-specific invisible attack which generates
sample-specific invisible additive noises as backdoor trig-
gers. It generates sample-specific invisible additive noises as
backdoor triggers by encoding an attacker-specified string
into benign images through an encoder-decoder network.
Adaptive-Blend is an adaptive poisoning strategy suggested



Table A1. Details for all datasets used in our experiments.

Dataset # Input size Classes Training images Testing images

CIFAR-10 3×32×32 10 50,000 10,000
GTSRB 3×32×32 43 39,209 12,630

Tiny ImageNet 3×64×64 200 100,000 10,000

Table A2. Details for training models with different datasets used in our experiments.

Dataset Models Optimizer Epochs Initial Learning Rate Learning Rate Momentum Weight
Learning Rate Scheduler Decay Epoch Decay

CIFAR-10 ResNet-18 SGD 100 0.1 MultiStep LR 50,75 0.9 1e-4
GTSRB ResNet-18 SGD 100 0.1 MultiStep LR 50,75 0.9 1e-4

Tiny ImageNet ResNet-18 SGD 100 0.1 MultiStep LR 50,75 0.9 1e-4

that can suppress the latent separability characteristic.
In order to better reconstruct the different methods of ob-

taining backdoor data in practice, we have implemented
a portion of the attacks using an open-source toolkit -
“backdoor-toolbox”. 1 We are able to control the relevant
settings for this subset of attacks. For the other attacks, we
directly utilize the backdoor data provided by an open-source
repository - “BackdoorBench”, 2 which is more common and
important in practice, as we lack the corresponding knowl-
edge about backdoor attacks. We show the examples of
both triggers and the corresponding poisoned samples in
Figure A8.

BadNet. We implemented this attack using the backdoor-
toolbox. The trigger we used on CIFAR-10 and GTSRB is
a 3×3 checkerboard placed in the bottom right corner of an
image, and a 6×6 trigger placed in the same position on Tiny
ImageNet.

Blend. We implemented this attack using the backdoor-
toolbox. Following the original paper [6], we choose “Hello
Kitty” trigger. The blend ratio is set to 0.2.

TrojanNN. We directly use the data provided by Back-
doorBench.

Label-Consistent. On CIFAR-10, we directly use the ad-
versarial images provided by the original paper; 3 on GTSRB
and Tiny ImageNet we use the adversarial images provided
by BackdoorBench.

1https://github.com/vtu81/backdoor-toolbox
2https://github.com/SCLBD/BackdoorBench
3https://github.com/MadryLab/label-consistent-

backdoor-code

WaNet. We implemented this attack using the backdoor-
toolbox. In line with the original paper [32], we maintained
consistency by setting the cover ratio to twice the poisoning
ratio. This means that for every poisoned data sample, there
were two additional interference data samples. These inter-
ference data samples still carried the backdoor trigger but
their labels were not modified to the target class.

ISSBA. We directly use the data provided by Backdoor-
Bench.

Adaptive-Blend. We implemented this attack using the
backdoor-toolbox. Following the original paper [35], we
choose “Hello Kitty” trigger and set the the cover ratio equal
to the poisoning ratio. Compared to the original paper, we
only added the cover ratio and poisoning ratio to ensure that
the attack success rate exceeds 85%. On CIFAR-10 and
GTSRB, we selected the “Hello Kitty” trigger, setting both
the cover ratio and poisoning ratio to 0.01, and the blend
ratio to 0.2. On Tiny ImageNet, we chose a random noise
trigger, setting both the cover ratio and poisoning ratio to
0.02, and the blend ratio to 0.15.

D.3. Implements of Baseline Defences.
We implement Spectral Signature [43], Strip[11],
Spectre[16] and SCAN [42] based on the original
implementation provided by the backdoor-toolbox. We have
implemented the SCP [14] based on the backdoor-toolbox.
We use the original implementation of CD-L [19] and follow
the hyperparameter settings specified in the original paper.

D.4. Performance of the Benign and Poisoned Mod-
els.

Consistent with the methodology employed in previous back-
door attack studies, we utilize performance metrics to assess
the effectiveness of the backdoor attacks: attack success rate
(ASR) and clean accuracy (CA). ASR denotes the success

https://github.com/vtu81/backdoor-toolbox
https://github.com/SCLBD/BackdoorBench
https://github.com/MadryLab/label-consistent-backdoor-code
https://github.com/MadryLab/label-consistent-backdoor-code
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Figure A8. The various triggers of the attacks used in our study and corresponding poisoned samples.
Table A3. The performance of the benign and poisoned models with ResNet-18 architecture.

Dataset Benign BadNet Blend TrojanNN Label-Consistence WaNet ISSBA Adaptive-Blend
CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA

CIFAR-10 0.853 1.000 0.843 0.999 0.848 1.000 0.841 1.000 0.850 0.955 0.828 0.985 0.825 0.871 0.938
GTSRB 0.981 1.000 0.982 0.999 0.975 1.000 0.980 0.994 0.975 0.988 0.982 0.999 0.983 0.913 0.952

Tiny ImageNet 0.615 0.998 0.608 0.994 0.607 0.999 0.470 0.997 0.595 0.996 0.593 0.975 0.455 0.905 0.616

rate in classifying the poisoned samples into the correspond-
ing target classes. CA measures the accuracy of the back-
doored model on the benign test dataset. ASR and CA for
different backdoor attacks are included in Table A3. The
poisoning ratio is 10%.

D.5. Computational Environment

All experiments are conducted on a server with the Ubuntu
18.04.6 LTS operating system, a 2.10GHz CPU, 3 NVIDIA’s
GeForce GTX3090 GPUs with 24G RAM.

E. Detection Performance on Low Poisoning
Ratio Scenario

We evaluate the performance of all detection methods under
scenarios with low poisoning ratios. A small poisoning
ratio prevents models from overfitting to triggers, thereby
weakening the connection between triggers and target labels
and presenting a significant challenge for backdoor data
detection.

As shown in Table A4, PSBD demonstrated superior
performance against various backdoor attacks under low poi-
soning scenarios, outperforming all other baseline methods
on average. However, its performance exhibited a slight
decline in certain attack settings. This degradation may be
attributed to the reduced robustness of neuron bias paths
within the model due to the limited amount of backdoor
data, making it more susceptible to random fluctuations. The
performance of other baseline methods deteriorated signifi-
cantly, particularly on the more challenging Tiny ImageNet
dataset.

F. Resistance to Potential Adaptive Attacks
The most common adaptive attack scenario is one with a low
poisoning ratio. As shown in Section E, our PSBD method
demonstrates effective performance.

We further evaluate the robustness of PSBD against po-
tential adaptive attacks in the worst-case scenario, where
adversaries have complete knowledge of our defense. Typi-
cally, a vanilla backdoored model performs normally with
benign samples but produces adversary-specific predictions
when exposed to poisoned samples. The objective function
for training such a model with a poisoned training dataset
can be represented as follows:

min
θ

Lbd(Dc ∪ Db;θ) (3)

where θ denotes the model parameters and L is the cross
entropy loss function. We develop an adaptive attack by
introducing a loss term specifically designed to ensure that
benign samples have a low PSU value. This adaptive loss
item Lada is defined as:

Lada = ϕPSU (x),x ∈ Dc ∪ Db (4)

Subsequently, we integrate this adaptive loss Lada with
the vanilla loss Lbd to formulate the overall loss function as
L = (1−α)Lbd+αLada , where α is a weighting factor. We
then optimize the original model’s parameters θ by minimiz-
ing L during the training phase. Please note that, to maintain
the effectiveness of the training process, we compute Lada

every 50 iterations. As in previous experiments, we also use
two representative backdoor attacks, BadNets and WaNet, to
develop adaptive attacks on the CIFAR-10 dataset.

The adversary aims to find a value of α that best balances
the ASR and CA. Table A5 presents the performance of



Table A4. The performance (TPR/FPR) on CIFAR-10, GTSRB and Tiny ImageNet. We mark the best result in boldface while the value with underline
denotes the second-best. The failed cases (i.e., TPR < 0.8) are marked in gray. We use the same results as in Table 1 for Adaptive-Blend attack as the 1% and
2% poisoning ratios are sufficiently low. Other attacks have a 5% poisoning ratio. OOT indicates that the method did not finish within the allocated time limit.

Defenses→ PSBD (Ours) Spectral Signature Strip Spectre SCAN SCP CD-LAttacks↓
CIFAR-10

Badnet 0.979/0.158 0.977/0.475 1.000/0.115 1.000/0.473 1.000/0.090 1.000/0.199 0.999/0.164
Blend 0.899/0.176 0.892/0.479 0.984/0.114 1.000/0.473 0.973/0.015 0.979/0.236 0.957/0.161

TrojanNN 0.951/0.175 0.925/0.478 1.000/0.117 0.969/0.475 0.998/0.018 0.967/0.201 1.000/0.162
Label-Consistent 1.000/0.107 0.895/0.479 0.977/0.117 0.999/0.473 0.970/0.019 0.910/0.201 0.994/0.166

WaNet 1.000/0.113 0.820/0.483 0.044/0.107 0.985/0.475 0.856/0.036 0.861/0.220 0.430/0.149
ISSBA 0.998/0.153 0.877/0.480 0.712/0.120 0.999/0.474 0.945/0.008 0.937/0.271 0.984/0.163

Adaptive-Blend 0.982/0.184 0.608/0.145 0.014/0.069 0.753/0.144 0.000/0.023 0.779/0.246 0.432/0.167
Average 0.973/0.152 0.861/0.431 0.714/0.109 0.963/0.427 0.839/0.018 0.918/0.225 0.828/0.162

GTSRB

Badnet 0.993/0.202 0.448/0.502 0.995/0.094 0.552/0.497 OOT 1.000/0.328 0.839/0.188
Blend 0.859/0.223 0.448/0.502 0.915/0.094 0.552/0.497 OOT 0.301/0.334 0.072/0.198

TrojanNN 0.978/0.206 0.449/0.502 0.408/0.093 0.551/0.497 OOT 0.150/0.329 0.515/0.191
Label-Consistent 0.844/0.202 0.449/0.502 0.998/0.113 0.551/0.497 OOT 0.956/0.403 0.198/0.172

WaNet 0.999/0.085 0.448/0.502 0.030/0.102 0.552/0.497 OOT 0.043/0.320 0.022/0.185
ISSBA 0.986/0.214 0.449/0.502 0.469/0.102 0.551/0.497 OOT 0.590/0.334 0.446/0.195

Adaptive-Blend 0.899/0.194 0.299/0.392 0.004/0.094 0.750/0.388 OOT 0.071/0.332 0.028/0.158
Average 0.937/0.189 0.427/0.486 0.546/0.099 0.580/0.481 OOT 0.444/0.340 0.303/0.184

Tiny ImageNet

Badnet 0.996/0.093 0.452/0.502 0.878/0.109 0.548/0.497 OOT 0.998/0.279 0.390/0.178
Blend 0.871/0.065 0.453/0.502 0.558/0.097 0.548/0.497 OOT 0.624/0.269 0.376/0.185

TrojanNN 0.939/0.203 0.453/0.502 0.980/0.107 0.547/0.497 OOT 0.991/0.279 0.990/0.166
Label-Consistent 0.983/0.100 0.452/0.502 0.518/0.090 0.548/0.497 OOT 0.978/0.092 0.967/0.154

WaNet 0.944/0.109 0.452/0.502 0.107/0.093 0.548/0.497 OOT 0.314/0.267 0.403/0.150
ISSBA 0.890/0.216 0.452/0.502 0.994/0.104 0.547/0.497 OOT 0.663/0.320 0.644/0.140

Adaptive-Blend 0.949/0.095 0.392/0.502 0.210/0.099 0.621/0.497 OOT 0.505/0.218 0.331/0.176
Average 0.939/0.126 0.445/0.502 0.595/0.100 0.557/0.497 OOT 0.684/0.265 0.586/0.164

Table A5. The attack performance of adaptive attacks.

α → 0.2 0.5 0.9
Attacks↓ ASR CA ASR CA ASR CA

Badnet 1.000 0.828 1.000 0.838 1.000 0.836
WaNet 0.899 0.803 0.931 0.820 0.925 0.823

Table A6. Performance (TPR/FPR) of PSBD under adaptive attacks.

α → 0.2 0.5 0.9Attacks↓
Badnet 0.989/0.157 0.997/0.131 0.967/0.127
WaNet 1.000/0.119 0.998/0.138 1.000/0.114

the adaptive attacks under various α settings. As shown
in the results, both attacks (BadNets and WaNet) on the
CIFAR-10 dataset consistently exhibit high ASR and CA
across different values of α, highlighting the effectiveness
of the adaptive attacks.

On the other hand, Table A6 shows that adaptive attacks

can still be effectively defended by our method. We con-
ducted further investigation and observed that the adaptive
loss indeed caused the model to behave differently from the
non-adaptive version. However, our defense can adapt to
modified backdoor models. Specifically, we observed that a
dropout rate of 0.7 was used for the non-adaptive backdoor
model, as detailed in Section 4.2 of the main paper. In con-
trast, the dropout rate for the adaptive model was 0.8. In
other words, our algorithm learns to select the appropriate
dropout rate for different models. This ability to counter
adaptive attacks is a key advantage of our method compared
to previous approaches.

G. AUROC Metric

In addition to the TPR and FPR metrics, we also compare
the AUROC metric with the CD-L method. We evaluate the
AUROC on the more challenging Tiny ImageNet dataset, and
the results are presented in Table A7. We observe that our
method achieves a high AUROC score across various attacks,
which verifies the robustness of our method in selecting the
threshold parameter T .



Table A7. The AUROC values (AUROC) on Tiny ImageNet.

Defenses→ PSBD (Ours) CD-LAttacks↓
Badnet 0.993 0.474
Blend 0.958 0.922

TrojanNN 0.963 0.877
Label-Consistent 0.996 0.548

WaNet 0.985 0.831
ISSBA 0.907 0.801

Adaptive-Blend 0.969 0.705
Average 0.967 0.737

H. Limitations
While this study introduces a promising approach to enhanc-
ing the security of DNNs through the PSBD method, it also
has several limitations.

The majority of existing approaches, such as SCP, Catch-
Backdoor [21] and our PSBD primarily rely on empirical
findings with limited theoretical foundations. Developing
solid theoretical justifications for these methods remains
important future work.

Our experiments use model architectures and datasets
consistent with prior studies [14, 21] to ensure fair compa-
rability, which represents the most common experimental
setup in the field. As discussed in Sections 3.2 and 5.1, while
defenders can employ any model or training strategy to ef-
fectively detect backdoor data, the generalizability of the
Prediction Shift phenomenon to more complex architectures,
such as ViT[8], and larger-scale datasets remains a valuable
avenue for future exploration.


