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A. Preliminary
A.1. Mamba
State Space Models (SSMs) [3] have emerged as a robust
foundation in deep learning, drawing from traditional con-
trol theory and providing linear scalability with sequence
length for long-range dependency modeling. Structured
State Space Sequence Models (S4) and Mamba both em-
ploy a classical continuous system, which maps a 1D func-
tion or sequence, denoted as x(t) ∈ R, through a hidden
state h(t) ∈ RN to an output y(t) ∈ R. The SSMs are for-
mulated as the following linear Ordinary Differential Equa-
tions (ODEs):

h′(t) = Ah(t) +Bx(t),

y(t) = Ch′(t),
(1)

where A ∈ RN×N represents the state matrix, while B ∈
RN×1 and C ∈ R1×N are the projection parameters. These
continuous parameters A and B are then discretized us-
ing a timescale parameter ∆. The Zero-Order Hold (ZOH)
method is typically employed for this discretization, defined
as follows:

Ā = exp(∆A),

B̄ = (∆A)−1(exp(∆A)− I ·∆B.
(2)

Upon discretization, Eq.1 can be transformed into the
following RNN form with a step size ∆:

ht = Āht−1 + B̄xt,

yt = Cht.
(3)

Moreover, Eq.3 can be equivalently converted into the
following CNN form:

K̄ = (CB̄,CĀB̄, . . . ,CĀM−1B̄),

y = x⊛ K̄.
(4)

*The corresponding author.

where ⊛ represents the convolution operation, K̄ ∈ RM is
a structured convolution kernel, and M denotes the length
of the input sequence x.

B. More Details on Our Method
B.1. VMamba-based Multi-scale Feature Enhance-

ment block
From our perspective, the current cross-modal fusion
method [10] lacks effective feature extraction, as it re-
lies solely on existing single-modality feature extractors for
the concatenated features from two modalities. Inspired
by the VMamba [8] block’s capability to extract feature
and model long-range dependencies, we incorporate the
VMamba block to further process the multi-scale feature
f i(i ∈ {3, 4, 5}) extracted by CSPDarknet [1].

Initially, the feature f i is flattened to form the input
token sequence T i ∈ RB×N×C , where B,N,C denote
batch size, sequence length, and the number of channel,
respectively. The sequence is first normalized by a nor-
malization layer and then projected into x ∈ RB×N×P

and r ∈ RB×N×P through a linear layer. Subsequently,
a 1D convolution layer with SiLU activation is applied to x,
yielding x′. This intermediate representation x′ is further
linearly projected into A, B, and C. A timescale parameter
∆ is then employed to discretize A and B into Ā and B̄.
The output y is computed using the SSM , as described in
Eq.4. Following this, y is gated by r and combined with the
input T i to produce the output sequence that preserves the
original shape of the input. Finally, a reshape operation is
applied to this output sequence, resulting in the final refined
feature f i.

B.2. Graph node updating based on GRU.
To enhance the nodes’ ability to capture complex feature
interactions and retain relevant information from neighbor-
ing nodes, we employ GRU-based [2] updates for the graph
nodes over L iterations. The latter section shows that set-
ting L = 3 yields the best detection performance. The node
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Figure 1. Detection visualization on FLIR dataset. The results of baseline (YOLOX), TIRDet, PFGF (ours), and ground truth are repre-
sented in the first, second, third, and fourth columns, respectively. Correspondingly, the first two rows present samples during the day,
and the last two rows present samples at night. Red, blue, and green boxes denote the detected objects “person”, “car”, and “bicycle”,
respectively.

feature f i
j is updated using UGRU (f

i
j ,m

i,l−1
j ) following l-1

message passing. The operation UGRU is defined in detail
as follows:

vi,lj = σ
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Wvm

i,l−1
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i,l−1
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)
,

ri,lj = σ
(
Wrm

i,l−1
j + Urf

i,l−1
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)
,

h̃i,l
j = tanh

(
Whm

i,l−1
j + ri,lj ⊙ (Uhf

i,l−1
j ) + bh

)
,

f i,l
j = vi,lj ⊙ f i,l−1

j + (1− vi,lj )⊙ h̃i,l
j ,

where vi,lj and ri,lj are the update and reset gates, respec-
tively, controlling the balance between preserving past fea-
tures and incorporating new information from its neighbors.
h̃i,l
j represents the candidate feature. W and U denote the

weight matrix, b is bias term. f i,l
j is the updated feature,

allowing each node to dynamically adjust its representa-
tion and effectively capture complex interactions within the
graph.

C. More Experimental Results

Visualization comparison. We conduct a visual compar-
ison between the proposed PFGF method, the base de-
tector, and the publicly available mono-modality method
TIRDet [10] on the FLIR, LLVIP, and Autonomous Vehi-
cle datasets. The results are obtained at a confidence score
[9] threshold of 0.5. The detection results are shown in
Fig. 1, 2, and 3. The proposed PFGF method enhances
the performance by increasing the True Positive (TP) detec-
tions and the confidence level of object detection in com-
plex scenes. Additionally, in daytime scenarios, our method
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Figure 2. Detection visualization on LLVIP dataset. The results of baseline (YOLOX), TIRDet, PFGF (ours), and ground truth are
represented in the first, second, third, and fourth columns, respectively. Correspondingly, the first two rows present samples during the day,
and the last two rows present samples at night. Red boxes indicate detected “person” objects.

shows a reduced False Positive (FP) detections in thermal
images. This demonstrates the effective integration of vis-
ible information, enabling accurate detection of easily am-
biguous objects. In contrast, the TIRDet method exhibits
unreliable detections and False Negative (FN) detections,
particularly with the car category.

Sensitivity analysis. To assess the impact of the num-
ber of nodes n and message passing iterations L within the
graph on both FLIR and LLVIP datasets, we present the de-
tection results for various node quantities while keeping all
other parameters constant, as depicted in Fig. 4 and Fig. 5.
The detection performance is suboptimal with a single node
in the graph, but there is a significant improvement when the
number of nodes is increased to three. Further increasing
the number of nodes to 5 yields only marginal performance
enhancements, with results closely matching those obtained

using n = 3. However, this increase in nodes also leads to a
reduction in the network’s operational efficiency. Moreover,
an excessive number of nodes leads to performance deterio-
ration due to the presence of redundant information, a trend
that is particularly evident in the LLVIP dataset. As a result,
utilizing 3 nodes strikes an optimal balance between speed
and accuracy. The impact of the message passing iterations
L on detection performance is consistent with the findings
related to the number of nodes. To ensure an optimal trade-
off between speed and performance, we set L = 3.

Effective analysis on the numbers of using Mamba. In
our ablation studies, we have validated the effectiveness of
VMamba-based Multi-scale Feature Enhancement (MEM)
block, Inter-Mamba block, and CKI strategy. Here, we fur-
ther evaluate the impact of the number using Mamba blocks
in different places, as shown in Fig. 6 and Fig. 7. The num-
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Figure 3. Detection visualization on Autonomous Vehicles dataset. The results of baseline (YOLOX), TIRDet, PFGF (ours), and ground
truth are represented in the first, second, third, and fourth columns, respectively. Correspondingly, the first two rows present samples during
the day, and the last two rows present samples at night. Red, blue, green, yellow, and cyan boxes represent the detected objects “person”,
“car”, “bike”, “color cone”, and “car stop”, respectively.

Figure 4. Hyperparameter analysis with respect to n and L on the
FLIR dataset.

ber of VMamba blocks used in MEM is denoted by K, the
number of Inter-Mamba blocks in cross-modality fusion by
O, and the number of VMamba blocks in CKI by D. We

Figure 5. Hyperparameter analysis with respect to n and L on the
LLVIP dataset.

varied the number of each type of Mamba block from 1 to
5 while keeping other parameters constant.

As illustrated in Fig. 6, for the VMamba block in MEM,



Figure 6. Hyperparameter analysis with respect to K, O and D on the FLIR dataset.

Figure 7. Hyperparameter analysis with respect to K, O and D on the LLVIP dataset.

Method
FLIR LLVIP AV

mAP mAP50 mAP mAP50 mAP mAP50

FPN[7] 43.3 79.6 64.4 95.0 41.3 75.3
CKI* 44.4 81.8 66.3 96.1 43.7 76.6
CKI 47.1 84.8 67.3 96.9 45.9 78.8

Table 1. Comparisons of different cascade strategies on FLIR,
LLVIP, and AV datasets. AV: Autonomous Vehicles dataset.

detection performance remains relatively stable across dif-
ferent block numbers. The optimal performance is observed
with 2 blocks, beyond which the performance gradually de-
creases. Increasing the number of Inter-Mamba blocks from
1 to 2 results in a substantial performance improvement.
Beyond this point, the mAP value increased slowly, but at
the cost of a higher computational burden. Consequently,
we set the number to O = 2. For the VMamba blocks
in the CKI, the optimal performance is also achieved with
2 blocks, with performance declining when the number of
blocks is increased further.

The Effectiveness of Cascade Knowledge Integration
(CKI) strategy. A key design of our approach is the novel
Cascade Knowledge Integration (CKI) strategy. To vali-
date the effectiveness of the CKI strategy, we compare it
with Feature Pyramid Networks (FPN) and CKI*. FPN is a
common multi-level fusion strategy that merges high-level
semantic features with lower-level spatial features. CKI*
refers to the cascade propagation of knowledge from the
high-level subgraph to the low-level subgraph. The data
inputs for these strategies differ. For FPN, we first apply

Method mAP mAP50 FLOPS(G)↓ Param(M)↓

IDA[6] 46.3 81.1 62.1 54.1
DIP[4] - 77.3 156.0 59.1
IAH[11] - 76.4 272.6† 114.5†

TIRDet[10] 44.3 81.4 405.1 55.8
PFGF 47.1 84.8 409.0 66.9

Table 2. Comparisons on FLIR dataset in terms of mAP, mAP50,
mAP75, FLOPS, and Param.

cross-modality fusion using Inter-Mamba to combine the la-
tent pseudo-visible feature z with the lowest discriminative
feature f3, and then pass the fused result to FPN for further
integration. In contrast, for CKI*, the latent pseudo-visible
feature z is fused with the highest discriminative feature
f5 using Inter-Mamba, enabling information propagation
from f5 to f3. As shown in Table 1, our CKI strategy con-
sistently outperforms all other methods across all datasets,
highlighting its superior ability to distill and leverage multi-
level information compared to existing approaches.

Feature map visualization. To further validate the ef-
fectiveness of our proposed GMF module, we select two
images each from the FLIR and LLVIP datasets to visualize
and compare the feature maps of Cross-Modality Aggre-
gation (CMA) [10], the Graph Interaction Module (GIM)
[5], and our Graph-Mamba Fusion (GMF) at Stage-3. To
highlight the activation regions within the feature maps,
we compute the averages across the channel dimension and
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Figure 8. Visualization of feature maps in CMA, GIM, and GMF modules on FLIR and LLVIP datasets. The first and third rows are
samples from FLIR dataset, while the second and fourth rows are from the LLVIP dataset. The first two rows represent samples taken
under good lighting conditions during the day, whereas the last two rows captured under low-light conditions at night.

normalize the resulting feature maps. As shown in Fig. 8,
the proposed GMF displays more activation regions com-
pared to CMA and GIM. Specifically, the comparison be-
tween the visualizations from GIM and GMF reveals that
while GIM emphasizes thermal information across the en-
tire feature map, GMF focuses more on the target regions.
This result demonstrates GMF’s strong capability to effec-
tively fuse thermal and generated visible information.

Comparisons for FLOPS and Param with others. Ta-
ble 2 presents a comparison of the detection results and effi-

ciency of different methods on the FLIR dataset. The sym-
bol † indicates that the method is not open-source, and its
FLOPS and Param are calculated based on our reproduced
codes. For other open-source methods, the FLOPS and
Param are computed using their official implementations.
The results demonstrate that while the proposed method
PFGF, significantly outperforms other approaches in de-
tection accuracy, it exhibits certain limitations in terms of
model size and efficiency. However, we consider this trade-
off worthwhile. In the future, we aim to address these limi-



tations by developing a lightweight and robust T2V transla-
tion model and designing more efficient graph structures,
such as dynamic graph networks, capable of optimizing
connections and node relevance in real-time, to further en-
hance the robustness of thermal object detection under vary-
ing environmental conditions.

Analysis of Feature Map Subtraction Strategy. Fea-
ture map subtraction computes edge weights while preserv-
ing local details, as convolution ensures each position re-
tains localized information. This method captures intrin-
sic differences with spatial consistency. Comparisons with
patch-based distance weighting on the FLIR dataset show
a 0.6% mAP drop, indicating that excessive reliance on
neighborhood information can introduce bias and distort
feature differences. These results validate the subtraction
approach as an effective and efficient strategy for feature
interaction.

D. Hardware specifications and software envi-
ronment

We utilized an Nvidia-3090-24G GPU for our computa-
tions. On the software side, we employed the MMdetec-
tion 1 framework (version: 2.26.0) for object detection al-
gorithms, based on the PyTorch 2 library (version 1.12.1).
For further details, please refer to the official website pro-
vided in the footnotes.
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