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Supplementary Material

In this supplementary document, we provide additional
details about our method, experiments, and results. In
Sec. 7, we elaborate on the Gaussian transformation cal-
culations, the online frame processing algorithm, and im-
plementation details. Section 8 includes further ablation
studies, experiments and limitations. Finally, in Sec. 9, we
showcase online reconstruction results and provide addi-
tional qualitative comparisons. We also encourage viewing
our supplemental video for a comprehensive demonstration,
including a real-time online reconstruction showcase.

7. Method Details
7.1. Gaussian Transformation

To incorporate geometric priors from the 3DMM mesh, we
define Gaussian attributes in tangent space T . For render-
ing, these Gaussians are transformed into deformed space
D based on mesh deformation, as illustrated in Fig. 12. For
a mesh Mθ under expression parameters θ, the transforma-
tion involves computing the TBN matrix R for each trian-
gle (see Algorithm 1). Gaussian position xT and rotation
qT are transformed to D as follows:

xD = RxT + t, qD = RqT , (4)

where t is the translation vector, computed via barycen-
tric interpolation using the triangle vertices and the Gaus-
sian’s UV coordinates. The UV coordinates are initialized
by sampling from the UV map and remain fixed during op-
timization.

7.2. Online Frame Processing

For online reconstruction, each incoming frame is pro-
cessed sequentially, as shown in Algorithm 2. We first use a
real-time 3DMM tracker [13] to extract 3DMM parameters
θ from the incoming frame Ii and compute the correspond-
ing mesh Mi. The data sample Di = Ii, θi,Mi is then
assembled.

If the local sampling poolMl is full, the last sample Dj

is removed and appended to the global sampling poolMg

with probability |Mg|
j . Finally, Di is added to Ml. The

local poolMl operates in a FIFO manner, while the global
poolMg uses Reservoir Sampling [42]. The avatar model
is optimized using batched data sampled from both pools.

7.3. Implementation Details

Our method is implemented in PyTorch, with the Gaus-
sian Transformation, Linear Blending, and Color Initializa-

Algorithm 1 TBN Matrix Calculation

Input: Triangle vertices v0,v1,v2 and texture coordi-
nates uv0 = (u0, v0),uv1 = (u1, v1),uv2 = (u2, v2)

Output: TBN matrix R

M←
[
u1 − u0 u2 − u0
v1 − v0 v2 − v0

]
e1 ← v1 − v0

e2 ← v2 − v0

N← e1×e2

||e1×e2||[
T
B

]
←M−1

[
e1
e2

]
R←

[
T B N

]

tion modules written in CUDA as PyTorch extensions. The
batch-parallel Gaussian rasterizer builds upon the 3DGS
renderer [27].

We use the Adam optimizer with a batch size of 10.
Learning rates for x, α, s, q, and c are set to 0.0008, 0.25,
0.025, 0.005, and 0.0125, respectively. For blendshape pa-
rameters ∆x, ∆q, and ∆c, the learning rates are scaled by
0.05, 0.5, and 0.5, relative to x, q, and c. Blendshapes are
not applied to Gaussian opacity or scaling. We only use
RGB color for appearance modeling. Besides, we apply
activation functions after the linear blending to ensure the
validity of Gaussian parameters, following GaussianBlend-
shapes [33].

For the offline setting, we optimize our model for 5000
steps. In the online setting, to enable a more reason-
able comparison with the offline setting to evaluate our on-
line quality, we simulate a real-time on-the-fly setting by
streaming pre-processed video frames and FLAME param-
eters at 25 FPS. The training steps depend on the length
of the video stream, i.e. 2-minute video requires about 75k
steps (120s×630 training steps/s). We also implement a
real-time reconstruction pipeline using a real-time tracker
[13] and the FaceWarehouse 3DMM model [12]. All exper-
iments were conducted on a single NVIDIA RTX 3090.

The MLP F consists of three layers with a 128-
dimensional latent feature and is optimized with a learning
rate of 0.001. Following GaussianAvatars [37], we add 60
additional triangle faces to model teeth. The UV map res-
olution is initialized at 256, resulting in approximately 60k
Gaussians.
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Figure 12. Gaussian Transformation. The corresponding trian-
gle face and the transformed Gaussian are illustrated in yellow and
sky blue, respectively.

Algorithm 2 Processing Incoming Frame

Input: Input frame Ii, local sampling pool Ml, global
sampling poolMg

Output: UpdatedMl andMg

θi ← tracker(Ii)
Mθ ← compute 3DMM mesh(θi)
Di ← {Ii, θi,Mθ}
ifMl is full then

Dj ←Ml.pop front()
ifMg is full then ▷ Reservoir Sampling

k ← randint(0, j)
if k < |Mg| then ▷ |Mg| is the size ofMg

Mg[k]← Dj

end if
else
Mg.append(Dj)

end if
end if
Ml.append(Di)

8. Additional Experiments

8.1. Ablation on Model Design

We conducted ablation studies to evaluate our model design,
with quantitative results shown in Tab. 5. Our default design
consistently outperforms other variants.

First, we tested a variant without defining Gaussians in

Ground Truth Ours w/o tangent space

Figure 13. Impact of tangent space. Without geometry prior
provided by mesh deformation, the model delivers blurred results.

Ground Truth Ours w/o blendshape

Figure 14. Impact of blendshape. Without blendshapes, the
model lacks representation capacity to model wrinkle-level details.

Ground Truth Ours w/o pose input

Figure 15. Impact of pose input. Without joint pose input,
the model lacks information represents pose-relevant appearance,
such as eyeglass reflection.

Method PSNR SSIM LPIPS

w/o tangent space 31.01 0.9513 0.0825
w/o blendshape 29.12 0.9402 0.0920
w/o pose input 30.79 0.9533 0.796
Ours (linear) 31.38 0.9556 0.772
Ours 31.19 0.9565 0.737

Table 5. Ablation study on model design. Our default setting
outperforms other variants. Experiments are conducted on INSTA
dataset.

tangent space (w/o tangent space), where Gaussians are
transformed using joint poses instead of mesh deformation,
similar to GaussianBlendShapes [33]. Since our reduced
blendshapes are subject-adaptive, initializing with generic
FLAME blendshapes is infeasible. Consequently, the joint
pose rotations provide insufficient geometric priors, lead-
ing to suboptimal Gaussian transformations. As shown in
Fig. 13, this variant relies on color composition to fit subtle



Method PSNR↑ SSIM↑ LPIPS↓ eorth

Orthogonal loss 30.91 0.9499 0.0890 9.164× 10−4

QR decomposition 30.26 0.9462 0.0912 9.558× 10−8

Schmidt orthogonalization 30.75 0.9492 0.0892 4.157× 10−8

Ours (not orthogonal) 31.16 0.9551 0.0725 3.173

Table 6. Investigation of basis orthogonality. Experiments are conducted on INSTA dataset.

deformations (e.g., around the mouth), resulting in blurred
self-reenactment results.

Second, we evaluated a variant without blendshapes (w/o
blendshape), where only a single set of base Gaussians is at-
tached to the 3DMM mesh, similar to SplattingAvatar [39]
and GaussianAvatars [37]. This configuration lacks the ca-
pacity to model finer details, such as wrinkles or eyeball
reflections, as shown in Fig. 14.

Third, we ablated the FLAME parameters provided to
the MLP, which are mapped to reduced blendshape weights.
Our default setting (Ours) includes both expression coeffi-
cients and joint poses. When joint poses are excluded (w/o
pose input), the model fails to represent pose-dependent ap-
pearance features, such as eyeglass reflections (Fig. 15).

Finally, we replaced the MLP in our model with a sim-
ple linear projection (Ours (linear)). As shown in Tab. 5,
while this variant achieves slightly higher PSNR, it per-
forms worse on SSIM and LPIPS metrics.

8.2. Ablation on Online Reconstruction Strategy

We further analyzed the importance of our global and local
sampling strategy for online reconstruction.

Fig. 16 compares the per-frame L1 loss with (left) and
without (right) global sampling. The blue line shows the L1
loss after online training, while the orange line indicates the
minimum L1 loss during training. The gap between these
lines reflects the extent of ”forgetting.” Our sampling strat-
egy effectively mitigates this issue.

Additionally, we examined the impact of pool size on re-
construction quality (Tab. 7). The results show that varying
pool sizes has minimal effect. Based on empirical obser-
vations, we set the local pool size to |Ml| = 150 and the
global pool size to |Mg| = 1000.

8.3. Investigation of Basis Orthogonality

The blendshape bases of FLAME are constructed using
PCA, making them inherently orthogonal. However, our
reduced blendshape bases break this orthogonality during
training. Therefore, we examine whether maintaining or-
thogonality is necessary. First, we formally define the or-
thogonality of the 20 reduced blendshape bases as

eorth = ||V V T − I||2, (5)
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Figure 16. Impact of global sampling on online reconstruction.
Left: per frame L1 loss with our sampling strategy. Right: per
frame L1 loss without gloabal sampling.

Driving Ours GaussianBlendshapes FlashAvatar GaussianAvatars

Figure 17. Qualitative comparisons of cross-id reenactment.

Method PSNR SSIM LPIPS

|Ml| = 150, |Ml| = 500 30.90 0.9537 0.0758
|Ml| = 150, |Ml| = 1000 31.04 0.9543 0.0758
|Ml| = 150, |Ml| = 1500 30.80 0.9544 0.0755
|Ml| = 150, |Ml| = 2000 31.06 0.9546 0.0759
|Ml| = 50, |Ml| = 1000 30.94 0.9542 0.0763
|Ml| = 100, |Ml| = 1000 30.90 0.9548 0.0755
|Ml| = 200, |Ml| = 1000 30.97 0.9546 0.0754

Table 7. Ablation study on sampling pool size of online recon-
struction. Experiments are conducted on INSTA dataset.

where V ∈ R20×d represents the concatenation of the nor-
malized 20 bases. The bases are perfectly orthogonal when
eorth = 0, although minor numerical errors may arise in
practice. Then we conduct three different experiments to
ensure orthogonality: we add 1) an orthogonal loss with



Method AED↓ APD↓ CSIM↑
MonoGaussianAvatar 10.9268 0.1406 0.7618
GaussianAvatars 9.9394 0.1167 0.7858
FlashAvatar 9.9210 0.1250 0.7952
GaussianBlendShapes 9.1241 0.1158 0.7866
Ours 9.2683 0.1179 0.7868

Table 8. Quantitative comparisons of cross-id reenactment.

Ground Truth Tracked FLAME Ours GaussianBlendshapes FlashAvatar

Figure 18. Limitation of tracking error.

loss weight λorth = 10. we perform 2) QR decomposi-
tion or 3) Schmidt orthogonalization, both every 1k training
steps. As shown in Tab. 6, our method achieves the best
result. Since our objective is to reconstruct a photorealistic
Gaussian avatar, it is not necessary for the blendshape bases
to be orthogonal.

8.4. Comparison of Generalization Ability

We futher evaluate 10 cross-identity reenactment video se-
quences using standard metrics from the image animation
literature [15]: average expression distance(AED), aver-
age pose distance(APD), and identity similarity(CSIM). As
shown in Tab. 8 and Fig. 17, our method yields comparable
results to other Gaussian-based methods.

8.5. Limitation of Tracking Error

Our method, along with others, exhibits artifacts caused by
tracking errors. We demonstrate a common tracking error
that occurs with a large side head pose in Fig. 18.

9. Additional Results
We present the online reconstruction results in Fig. 19,
demonstrating comparable quality to the offline setting. Ad-
ditional qualitative comparisons with other methods are
provided in Fig. 20.

Ground Truth Ours (offline) Ours (online)

Figure 19. Results of online reconstruction. Our online recon-
struction strategy achieves comparable quality to offline setting.



Ground Truth Ours GaussianBlendshapes MonoGaussianAvatar FlashAvatar GaussianAvatars SplattingAvatar

Figure 20. Additional Qualitative comparisons.
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