
A. Architectures for Domain-aware Attention

Table 1. Architectures for Domain-aware Attention module.

Features Inter-domain Attention Branch Intra-domain Attention Branch

Input T fi Ts fs Tt ft
K × 1024 B ×H ×W × C K × 1024 B ×H ×W × C K × 1024 B ×H ×W × C

Layer fp = P(fi) f = C(fi) fsp = Ps(fs) f cs = Cc(fs) f tp = Pt(ft) f ct = Cc(ft)
B ×H ×W × 1024 B ×H ×W × C B ×H ×W × 1024 B ×H ×W × C B ×H ×W × 1024 B ×H ×W × C

Layer w = SEAttention(T, fp) ws = SEAttention(Ts, f
s
p ) wt = SEAttention(Tt, f

t
p)

B ×H ×W × 1 B ×H ×W × 1 B ×H ×W × 1

Output f ′ = w · f + fi
B ×H ×W × C

Output f ′s = ws · f cs + f ′ f ′t = wt · f ct + f ′

B ×H ×W × C B ×H ×W × C

We provide detailed architectures for the proposed domain-aware attention module in Table 1, including the size of input
and output features for each layer.

B. Compared to SOTA methods
We present representative state-of-the-art DAOD approaches for comparison, including feature alignment, semi-supervised

learning and VLM-based domain alignment methods. This section provides a more detailed comparison including more
methods as well as architectural details.

Cross-Weather Adaptation Scenario As shown in Table 2 (C→F), the proposed SEEN-DA outperforms all compared
methods in terms of mAP and advances SOTA by 1.6%, from 55.9% to 57.5%. Specifically, our method improves perfor-
mance over six categories (i.e. person, rider, car, truck, train, and bicycle) ranging from 0.8% to 3.1%. From the perspective
of baseline, RegionCLIP [28] fine-tuned on the source domain suffers a 4.0% performance drop compared to zero-shot. This
suggests that directly fine-tuning on the source domain destroys the highly generalized semantic information provided by
the VLM, leading to insufficient domain-specific semantic information on the target domain. By freezing the visual encoder
and tuning the domain-aware attention module, the proposed SEEN-DA shows remarkable improvements of 8.9% over the
source-only variant and 4.9% over the zero-shot. These results indicate the effectiveness of the SEEN-DA in eliminating
redundant information and supplementing domain-specific semantic information.

Cross-FOV Adaptation Scenario Table 2(K→C) reports result for KITTI→Cityscapes. SEEN-DA achieves SOTA per-
formance of 67.1% mAP, gaining an improvement of 5.7%. And SEEN-DA outperforms the source-only baseline by 8.0%,
showing great efficiency.

Sim-to-Real Adaptation Scenario Table 2 (S→C) shows that the proposed method achieves the best results of 66.8%
mAP, outperforming the previous best entry HT [6] 65.5% with 1.3%. And the baseline is improved by SEEN-DA of 7.9%
on source-only condition and 6.0% on zero-shot, validating that the domain-aware attention can efficiently improve the
discriminability of the visual encoder in new scenarios.

Cross-Style Adaptation Scenario Additionally, we assess SEEN-DA on the more challenging Cross-Style adaptation,
where the semantic hierarchy has broader discrepancies. In Table 3, SEEN-DA peaks with 47.9% mAP and improves six
categories (aeroplane, bird, boat, bus, sheep and train). SEEN-DA also improves the RegionCLIP with 5.2% mAP, verifying
that the method is effective under challenging domain shifts and in multi-class problem scenarios.



Table 2. Comparison (%) with existing methods on Cross-Weather adaptation Cityscapes→Foggy Cityscapes (C→F), Cross-Fov adapta-
tion KITTI→Cityscapes (K→C) and Sim-to-Real adaptation SIM10K→Cityscapes (S→C).

C→F K→C S→ C

Methods Arch. Person Rider Car Truck Bus Train Motor Bicycle mAP mAP mAP

DA-Faster [3] FR 29.2 40.4 43.4 19.7 38.3 28.5 23.7 32.7 32.0 41.9 38.2
VDD [25] FR 33.4 44.0 51.7 33.9 52.0 34.7 34.2 36.8 40.0 - -
DSS [23] FR 42.9 51.2 53.6 33.6 49.2 18.9 36.2 41.8 40.9 42.7 44.5

MeGA [21] FR 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8 43.0 44.8
SCAN [14] FCOS+Graph 41.7 43.9 57.3 28.7 48.6 48.7 31.0 37.3 42.1 45.8 52.6

TIA [27] FR+CycleGAN 52.1 38.1 49.7 37.7 34.8 46.3 48.6 31.1 42.3 44.0 -
LRA [19] FR 45.6 47.1 59.7 31.2 52.4 44.6 28.1 39.5 43.5 49.4 55.7

SIGMA [15] FCOS+Graph 44.0 43.9 60.3 31.6 50.4 51.5 31.7 40.6 44.2 45.8 53.7
SIGMA++ [16] FCOS+Graph 46.4 45.1 61.0 32.1 52.2 44.6 34.8 39.9 44.5 49.5 57.7

CIGAR [18] FCOS+Graph 46.1 47.3 62.1 27.8 56.6 44.3 33.7 41.3 44.9 48.5 58.5
OADA [26] FCOS+Teacher 47.8 46.5 62.9 32.1 48.5 50.9 34.3 39.8 45.4 47.8 59.2
MTM [24] DETR+Teacher 51.0 53.4 67.2 37.2 54.4 41.6 38.4 47.7 48.9 - 58.1
CSDA [8] FCOS+Graph 46.6 46.3 63.1 28.1 56.3 53.7 33.1 39.1 45.8 48.6 57.8

HT [6] FCOS+Teacher 52.1 55.8 67.5 32.7 55.9 49.1 40.1 50.3 50.4 60.3 65.5
AT [17] FR+Teacher 56.3 51.9 64.2 38.5 45.5 55.1 54.3 35.0 50.9 - -

SOCCER [4] FR+Teacher 51.7 57.7 68.6 38.2 51.6 47.5 41.6 51.7 51.1 - 63.8
DSD-DA [7] FR+Teacher 49.0 59.6 65.3 35.7 61.0 46.5 43.9 57.3 52.3 49.3 52.5

CAT [10] FR+Teacher 44.6 57.1 63.7 40.8 66.0 49.7 44.9 53.0 52.5 - -
NSA-UDA [29] FR+Teacher+Graph 50.3 60.1 67.7 37.4 57.4 46.9 47.3 54.3 52.7 55.6 56.3

REACT [12] FR 51.4 57.9 67.4 37.7 58.4 52.8 44.6 54.6 53.1 59.5 58.6
DA-Pro [11] FR+VLM 55.4 62.9 70.9 40.3 63.4 54.0 42.3 58.0 55.9 61.4 62.9

RegionCLIP [28](Zero-Shot) FR+VLM 51.8 59.0 67.4 36.8 59.5 50.6 39.7 55.9 52.6 59.5 60.8
RegionCLIP [28](Source-Only) FR+VLM 49.6 55.0 63.2 34.1 55.6 48.3 36.0 47.0 48.6 59.1 58.9

SEEN-DA (Ours) FR+VLM 58.5 64.5 71.7 42.0 61.2 54.8 47.1 59.9 57.5 67.1 66.8

Table 3. Comparison (%) with existing methods on Cross-Style adaptation task Pascal VOC→Clipart
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UaDAN [9] 35.0 73.7 41.0 24.4 21.3 69.8 53.5 2.3 34.2 61.2 31.0 29.5 47.9 63.6 62.2 61.3 13.9 7.6 48.6 23.9 40.2
TFD [22] 27.9 64.8 28.4 29.5 25.7 64.2 47.7 13.5 47.5 50.9 50.8 21.3 33.9 60.2 65.6 42.5 15.1 40.5 45.5 48.6 41.2
DBGL [1] 28.5 52.3 34.3 32.8 38.6 66.4 38.2 25.3 39.9 47.4 23.9 17.9 38.9 78.3 61.2 51.7 26.2 28.9 56.8 44.5 41.6
FGRR [2] 30.8 52.1 35.1 32.4 42.2 62.8 42.6 21.4 42.8 58.6 33.5 20.8 37.2 81.4 66.2 50.3 21.5 29.3 58.2 47.0 43.3
UMT [5] 39.6 59.1 32.4 35.0 45.1 61.9 48.4 7.5 46.0 67.6 21.4 29.5 48.2 75.9 70.5 56.7 25.9 28.9 39.4 43.6 44.1

SIGMA [15] 40.1 55.4 37.4 31.1 54.9 54.3 46.6 23.0 44.7 65.6 23.0 22.0 42.8 55.6 67.2 55.2 32.9 40.8 45.0 58.6 44.5
ATMT [13] 37.5 63.4 37.9 29.8 45.1 62.7 41.2 19.5 43.7 57.4 22.9 25.3 39.6 87.1 70.9 50.6 29.1 32.2 58.4 50.5 45.2
CIGAR [18] 35.2 55.0 39.2 30.7 60.1 58.1 46.9 31.8 47.0 61.0 21.8 26.7 44.6 52.4 68.5 54.4 31.3 38.8 56.5 63.5 46.2

TIA [27] 42.2 66.0 36.9 37.3 43.7 71.8 49.7 18.2 44.9 58.9 18.2 29.1 40.7 87.8 67.4 49.7 27.4 27.8 57.1 50.6 46.3
SIGMA++ [16] 36.3 54.6 40.1 31.6 58.0 60.4 46.2 33.6 44.4 66.2 25.7 25.3 44.4 58.8 64.8 55.4 36.2 38.6 54.1 59.3 46.7

CMT [20] 39.8 56.3 38.7 39.7 60.4 35.0 56.0 7.1 60.1 60.4 35.8 28.1 67.8 84.5 80.1 55.5 20.3 32.8 42.3 38.2 47.0

RegionCLIP [28](Zero-Shot) 38.1 70.4 48.8 37.3 44.8 55.8 43.5 14.4 48.2 47.8 14.3 18.3 58.3 78.4 67.9 22.2 30.1 16.9 48.4 50.2 42.7
SEEN-DA (Ours) 44.1 73.4 54.7 47.1 45.1 76.0 51.6 20.4 51.7 53.0 18.5 17.3 61.8 86.8 72.2 22.8 37.7 21.1 58.9 52.7 47.9

C. Sensitivity on Ladv

Table 4. Sensitivity to hyper-parameters of initialization of λadv .

Cityscapes→ FoggyCityscapes

λadv 0.01 0.05 0.1 0.5 1.0 10.0

mAP 56.5 57.1 57.5 55.3 53.6 52.8

To select hyper-parameters for the adversarial loss in inter-domain attention branch, we perform experiments of different
choices of the weight value λadv . We conduct the experiment on SEEN-DA on Cityscapes→FoggyCityscapes adaptation



Figure 1. Visual Features w/ and w/o domain-aware attention

scenarios, as shown in Table 4. Initialized with 0.01, it suffers from insufficient alignment and obtains limited performance
of 56.5% mAP. Increasing the λadv , SEEN-DA peaks 57.5% when λadv = 0.1, and further increasing the hyper-parameter
leads to significant performance degradation. Therefore, we set λadv to 0.1.

D. Sensitivity on λt

Table 5. Sensitivity to hyper-parameters of initialization of λt.

Cityscapes→ FoggyCityscapes

λt 0.1 0.5 1.0 2.0 5.0

mAP 56.9 57.3 57.5 56.3 55.8

We also study the sensitivity of weight value λt for the classification loss with pseudo labels, as shown in Table 5. As the
weight value increases, the performance peaks with λt = 1.0 and then appears to decline. Therefore, we set λadv to 1.0.

E. Feaure Visualization
To further verify the effectiveness of domain-aware attention, we provide feature visualization. As shown in Fig. 1(c),

compared with (b) baseline, our domain-aware attention highlights the features of the object region and suppresses the
background area, improving the discriminability of visual features.

F. Analysis on Domain Tokens
The [Domain] token is manually defined to provide coarse domain information, with single word like [real] or multi

words like [real-world life scenario]. Meanwhile, we use learnable prompts [vs][vt] to adaptively learn fine-grained multiple
domain differentiating factors. In Table 6, compared with hand-crafted prompts, our learnable prompts perform well on both
simple and detailed [Domain] tokens, showing effectiveness in learning complex domain factors in P→C. Therefore, the
selection for [Domain] token is less important in SEEN-DA.

Table 6. Results (%) on P→C with different [Domain] tokens.

”[Domain]” token for Source Real-world life scenarios Real Pascal VOC -
”[Domain]” token for Target Cartoon characters in art paintings Art Clipart -

”A photo of [Class] in [Domain]” 47.5 47.1 46.5 46.0
”[vs][vt][Class][Domain]” 47.9 47.9 47.8 47.6

G. Error Bars
We provide error bars in Table 7. The error bars are captured by multiple running with given experimental conditions.



Table 7. mAP(%) on four benchmarks.

Cross-Weather Cross-FoV Sim-to-Real Cross-Style

57.5(± 0.3) 67.1(± 0.2) 66.8(± 0.4) 47.9(± 0.2)

H. Limitation
Though effective, the proposed SEEN-DA is specially designed for the domain adaptive object detection task, where a

labelled source domain and a unlabelled target domain are needed. Currently, the method cannot deal with the setting of
multiple source domains or no target domain. We plan to resolve these problems in our future research.
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