STAR-Edge: Structure-aware Local Spherical Curve Representation for
Thin-walled Edge Extraction from Unstructured Point Clouds

Supplementary Material

1. Appendix

This appendix provides details on network architecture for
edge detection, the visualization and composition of the
thin-walled structure dataset, and the evaluation of PIE-
NET with patch-based improvements. We also show more
comparison visualization results of STAR-Edge, and we
also verify its effectiveness with real scanned point clouds.
We then perform ablation studies on normal estimation and
edge optimization as well as a running time analysis. Fi-
nally, the limitations of the proposed approach are dis-
cussed.

1.1. Network architecture for point classification

Fig. 1 shows the used classification network composed of
a series of fully connected (FC) layers. The input layer ac-
cepts features of dimension B, representing the bandwidth
of the spherical harmonics. The output layer produces a cat-
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Figure 1. Detailed network architecture for edge point classifica-
tion.

1.2. Thin-walled structure dataset

Fig. 2 visualizes the used thin-walled structure dataset.
These structures exhibit diverse curved edges with varying
shapes, sizes, curvatures, and thicknesses ranging from 2 to
4. The dataset comprises 42 unique 3D models, of which
32 are used for the training set and 10 for the test set.

1.3. More careful comparison with PIE-Net

To compare with the SOTA method, PIE-Net, in our early
tests, we applied Farthest Point Sampling (FPS) to thin-
walled shapes and fed the downsampled point clouds into
PIE-Net to extract edges. However, as shown in the main
paper, PIE-Net performed poorly on the thin-walled struc-
ture dataset. Upon analysis, we determined that the primary
issue was the sparsity of the downsampled version of the

o sl adhe g
@ e . N— 4 /
A . A\//
. &= =

Figure 2. Visualization of thin-walled structure dataset.

input data. To address this, we normalized the point clouds,
divided each shape into patches, and processed each patch
individually through PIE-Net. The extracted edge points
from all patches were then aggregated to reconstruct the full
edge. The results of both implementations are presented
in Tab. 1. While the patch-based method showed slightly
better results on the ECD metric, its performance remained
sub-optimal compared to other state-of-the-art methods. We
attribute this limitation to the presence of nearby surfaces
along the edges of thin-walled shapes. The KNN-based fea-
ture extraction approach employed by PIE-Net struggles to
accurately capture and represent this specific characteristic.

Table 1. Comparisons of different PIE-NET implementations.

Metric PIE-Net (fps) [2] | PIE-Net (patch) [2]
Recallt 0.05 0.275
Precision? 0.03 0.019
F11 0.037 0.035
Accuracy? 0.935 0.829
ECDJ 52.12 43.92

1.4. More visualization results on thin-walled struc-
tures and ABC dataset

Fig. 3 compares the performance of STAR-Edge with state-
of-the-art methods on the thin-walled structures under a
challenging sampling resolution. Specifically, the tested
thin-walled shapes have thicknesses ranging from 2 to 3,
with a sampling resolution of 0.8. This implies that side-
ended faces may be covered by as few as three points.

In these scenarios, EC-Net and MFLE tend to gener-
ate redundant points along the ground-truth edges, includ-
ing a significant number of misclassified points. As ana-
lyzed in Sec. 1.3, PIE-Net also performs poorly on the thin-
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Figure 3. Visual comparison of different methods on the thin-walled structure dataset at a resolution of 0.8. Red points represent edge
points. Our method exhibits superior accuracy in extracting edge points.
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Figure 4. Visual comparison of edge extraction results on 3D shapes from the ABC dataset.
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Figure 5. Visualization of our method applied to real-scanned thin-walled structure data. In these close-up views, our method effectively

extracts edge points with high accuracy. Edge points are colored in red.

walled structure dataset. In contrast, our method outper-
forms these baselines by producing more precise and clearer
edge points.

We also evaluate our method on the ABC dataset. As
shown in Fig. 4, STAR-Edge achieves more precise edge
extraction than other baselines. It effectively captures criti-
cal features, particularly in regions with sharp corners.

1.5. Evaluation on Real-scanned 3D point clouds

In addition to the synthetic data, we evaluate our method on
several real-scanned point clouds of practical thin-walled
workpieces. Object A is a 1-meter-long skin panel with a
thickness of 2 mm. Object B is a wall panel with a minimum
thickness of approximately 2.5mm. Objects C, D, and E
are thin-walled structures with a uniform thickness of 3mm.

All point cloud data were collected using the SIMSCAN
scanner, configured with a resolution of 0.5mm.

Fig. 5 presents the edge extraction results on these scans.
Notably, Object A poses a significant challenge due to its
extremely thin-walled structure, where the cross-sectional
side edges are represented by only about four points. De-
spite some misidentifications, STAR-Edge effectively iden-
tifies edge points and demonstrates robustness against in-
terference from the very close upper and lower surfaces.
Moreover, as illustrated in Fig. 6, the proposed method per-
forms well not only on thin-walled shapes but also effec-
tively extracts edges from common real-world objects, fur-
ther validating its effectiveness.



Figure 6. Visualization of a common complex object (engine).

1.6. Effect of different normals for edge point opti-
mization

To evaluate the impact of different normal estimation meth-
ods on the final edge point results, we compare two variants
of STAR-Edge, as detailed in Tab. 2. Variant A: The edge
point optimization module is removed, relying solely on the
classification results. Variant B: The edge point optimiza-
tion uses the commonly employed PCA method for local
normal estimation. Ours: The proposed normal estimation
method is applied to optimize the edge points. Both Variant
A and Variant B exhibit noticeable performance degrada-
tion, highlighting the effectiveness of our normal estimation
method in refining edge points.

Table 2. Effect of different normals for edge point optimization.

Method Variants | Normal Estimation Method | ECD|
A: w/o optimization - 0.2921
B: w/ optimization PCA normal 0.1134
Ours: w/ optimization ours normal 0.0587

1.7. Running time performance

Table 3. Running time for different number of points.

#Points 92,000 327,000 | 2,090,000
EC-Net [4] 25s 1min 23s 11min 8s
PIE-Net (fps) [2] 0.4s 0.4s 0.4s
PIE-Net (patch) [2] 1.6s 5.7s 35.3s
MFLE [1] 0.7s 1.1s 7.6s
RFEPS [3] 6min 56s 19min 322min
STAR-Edge (Ours) 59.6s 3min 30s | 22min 24s

We report the running time statistics in Tab. 3, which
include point clouds with different numbers of points. As
reported, the running efficiency of our method is moderate.

1.8. Limitations

Our method demonstrates robust edge detection perfor-
mance for thin-walled structure data. However, it relies
somewhat on the distribution of local neighborhood spher-
ical projections, which can lead to misidentifications in the

presence of sharp noise. Additionally, insufficient points on
the side edges may hinder accurate detection. Due to the
need for per-point neighborhood calculations and iterative
optimization, our approach exhibits lower efficiency com-
pared to other methods.

References

[1] Honghua Chen, Yaoran Huang, Qian Xie, Yuanpeng Liu,
Yuan Zhang, Mingqiang Wei, and Jun Wang. Multiscale fea-
ture line extraction from raw point clouds based on local sur-
face variation and anisotropic contraction. /EEE Transactions
on Automation Science and Engineering, 19(2):1003-1016,
2021. 4

[2] Xiaogang Wang, Yuelang Xu, Kai Xu, Andrea Tagliasacchi,
Bin Zhou, Ali Mahdavi-Amiri, and Hao Zhang. Pie-net: Para-
metric inference of point cloud edges. Advances in neural
information processing systems, 33:20167-20178, 2020. 1, 4

[3] Rui Xu, Zixiong Wang, Zhiyang Dou, Chen Zong, Shiging
Xin, Mingyan Jiang, Tao Ju, and Changhe Tu. Rfeps: Re-
constructing feature-line equipped polygonal surface. ACM
Transactions on Graphics (TOG), 41(6):1-15, 2022. 4

[4] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Ec-net: an edge-aware point set consolida-
tion network. In Proceedings of the European conference on
computer vision (ECCV), pages 386—402, 2018. 4



	. Appendix
	. Network architecture for point classification
	. Thin-walled structure dataset
	. More careful comparison with PIE-Net
	. More visualization results on thin-walled structures and ABC dataset
	. Evaluation on Real-scanned 3D point clouds
	. Effect of different normals for edge point optimization
	. Running time performance
	. Limitations


