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The supplementary material is structured as follows:

• Rational to prioritize rewriting capability in Section A.
• Detailed data curation process in Seciton B.
• Comparison with related benchmarks in Section C.
• The training settings for SciScore in Section D.
• Setup of Science-T2I S and Science-T2I C in Sec-

tion E.
• Detailed baseline setup for SciScore in Section F.
• Additional results of SciScore in Section G.
• Additional analysis of SciScore in Section H.
• Qualitative analysis of IEE in Section I.
• Detailed benchmarking configuration in Section J.
• More results on benchmarking T2I model in Sec-

tion K.
• More results and analysis of explicit prompt alignment

in Section L.
• Details of two-stage training in Section M.
• Detailed two-stage training settings in Section N.
• Additional results of online fine-tuning in Section O.
• Additional observations in Section P.
• Limitations of SciScorein Section Q.
• Detailed task descriptions in Section R.

A. Rationale to Prioritize Rewriting Capability

In the development of our study, we considered incorpo-
rating additional reasoning tasks, such as reflection-based
tasks [8] that evaluate the consistency between objects and
their reflections. However, these tasks present unique chal-
lenges that influenced our decision to exclude them.

Reflection-based tasks require the representation of pre-
cise geometric details to capture the relationships between
objects and their reflections. Such intricate geometric infor-
mation cannot be fully conveyed through textual descrip-
tions alone. Consequently, current text-to-image generation
models face difficulties in producing both correct and in-
correct images for these tasks. This limitation hampers the
creation of a consistent and valid dataset necessary for eval-
uating generative models on reflection-based generation.

Given these constraints, we prioritized tasks that can
be effectively rephrased and consistently described using
language-based prompts. This ensures generative models
can interpret and generate the required images more reli-
ably, thereby facilitating robust data collection and analysis.
By focusing on linguistically describable tasks, we enhance
the reproducibility and validity of our findings.

Tasks that lack this flexibility, particularly those requir-
ing detailed geometric representation [25] and those sub-
tle light-related features [3] beyond the capacity of textual
prompts, are reserved for future exploration.

B. Detailed Data Curation Process
In this section, we provide a detailed overview of our data
curation process. We describe the methods used for gener-
ating subject-based prompts, synthesizing images, and es-
tablishing criteria for image selection.

Subject-Based Prompt. For each task, we first employ
GPT-4o [2] to define a comprehensive set of templates
for the implicit prompts. These templates act as structured
frameworks that capture the essence of the reasoning re-
quired while allowing for variability in the objects or sub-
stances involved. Using the templates, GPT-4o [2] gener-
ated a variety of implicit prompts by inserting appropriate
objects or substances into the placeholders. Then for each
implicit prompt, we used GPT-4o [2] to generate the corre-
sponding explicit prompt and superficial prompt. An illus-
tration of this instruction process is provided in Figure B1.

Synthetic Image Generation. The limited availability of
images relevant to our specific scientific reasoning tasks
within existing datasets and online resources necessitated
the generation of synthetic images. However, we could
not arbitrarily select a text-to-image model, as this choice
directly affects both the quality of the generated data and
the efficiency of data acquisition. Among the numerous
advanced models available, our choice was informed by a
comprehensive evaluation of several key factors. Below, we
outline the primary considerations that guided our decision:
• Descriptive Text-Image Alignment: The core objec-

tive involves generating images that accurately reflect
both explicit and superficial prompts. This necessitates
a model with a robust capability to align textual descrip-
tions with corresponding visual elements. Meanwhile,
effective text-image alignment is also paramount for ef-
ficient data collection.

• Realistic Style Consistency: Our reasoning-based tasks
are fundamentally grounded in scientific principles and
real-world phenomena. Consequently, it is imperative
that the generated images exhibit a style that reflects real-
ism rather than abstract or cartoonish representations.

Based on these criteria, we conducted a qualitative evalu-
ation of several state-of-the-art text-to-image models, in-
cluding Stable Diffusion XL [21], Stable Diffusion 3 [7],



DALLE 3 [5], and FLUX.1[dev] [1]. As illustrated in
Figure B2, FLUX.1[dev] [1] consistently outperformed the
other models in both text-image alignment and realistic
style consistency. Therefore, FLUX.1[dev] [1] was selected
as the model for synthetic image generation.

Criteria For Image Curation. As outlined in Section 3,
the scientific principles inherent in the implicit prompt con-
fer distinct visual features to the subject matter. During the
image generation process for Science-T2I, particular em-
phasis was placed on the regions where these visual fea-
tures are manifested. Our primary objective was to ensure
that these regions accurately represent the concepts in align-
ment with the underlying scientific principles specified in
the prompts. To achieve this, we established stringent cri-
teria for the images, specifically: (1) minimizing noise and
(2) preventing the introduction of irrelevant semantic infor-
mation. As illustrated in Figure R9,R10,R11, we accom-
plish this by selecting data with the simplest possible back-
grounds, such as solid colors. Additionally, we filter the
data to ensure that the regions of interest are as large as
possible, thereby maximizing the prominence of the visual
features.

C. Comparison with Related Benchmarks

In order to provide a comprehensive understanding of
how Science-T2I distinguishes itself from other existing
datasets, we present a detailed comparison in Table C1.
The key distinguishing features and advantages of Science-
T2I are as follows: (1) it enables the direct utilization
of SciScore for benchmark T2I generation, significantly
enhancing efficiency compared to approaches based on
LMMs; (2) its test set is uniquely designed to also serve
as a benchmark for evaluating LMMs, offering dual func-
tionality; and (3) it includes a large-scale training set that
not only supports the training of generative models but also
facilitates advancements in multimodal research.

Table C1. Comparison with related benchmarks.

Benchmark Type Category Training Set Evaluation

Generation LMM

Commonsense-T2I [9] Commonsense 5 ✘ ✔ ✘
T2I-FactualBench [11] Commonsense 8 ✘ ✔ ✘
PhyBench [20] Science 31 ✘ ✔ ✘

Science-T2I (Ours) Science 16 ✔ ✔ ✔

D. Detailed Training Settings for SciScore

This section provides a overview of the hyper-parameter
settings utilized during the training of SciScore. The key
parameters, including batch size, learning rate, and opti-
mizer configurations, are summarized in Table D2.

Table D2. Hyper-parameter settings used for training SciScore.

Hyper-parameters SciScore

batch size 128
learning rate 2× 10−6

learning rate schedule cosine
weight decay 0.3
training steps 600
warmup steps 150
optimizer AdamW [19]
λ 0.25

E. Setup of Science-T2I S and Science-T2I C

For the evaluation of SciScore, two meticulously curated
test sets are employed, each manually annotated and sub-
jected to a stringent iterative review process by domain
experts. This process involved cross-referencing the an-
notators’ specialized knowledge with authoritative online
sources to ensure accuracy and consistency. The valida-
tion procedure was repeated until unanimous consensus was
achieved among all annotators, thereby enhancing the reli-
ability of the test sets. These sets are strategically designed
to evaluate the model’s performance across varying levels
of complexity and are characterized as follows:

• Science-T2I S: This test set closely replicates the stylistic
and structural attributes of the training data. It emphasizes
simplicity by focusing on specific regions and strictly ad-
hering to the annotation criteria in Section B. The goal
of Science-T2I S is to assess the model’s performance on
data stylistically similar to its training set.

• Science-T2I C: This test set challenges the model in more
complex scenarios, introducing contextual elements like
explicit scene settings and diverse scenarios. Prompts
in Science-T2I C may include phrases such as ”in a bed-
room” or ”on the street,” adding spatial and contextual
variability. This complexity evaluates the model’s ability
to adapt to nuanced, less constrained environments.

F. Detailed Baseline Setup for SciScore

This section provides detailed descriptions of the baseline
setups employed to evaluate the performance of SciScore.

Vision-Language Models (VLMs). We employ two
VLMs as baseline models, CLIP-H [12] and BLIP-2 [16].
The reward computation involves encoding the implicit in-
put prompt and the input image using their respective text
and image encoders. Subsequently, we apply the scoring
mechanism described in Section 4 to evaluate the alignment
between the text and image pairs.



User Prompt

Assume you are an experienced scientist. Your task is to generate both a explicit prompt and a superficial prompt based on
a given input prompt. The input prompt is formulated with scientific principles and will serve as input for a text-to-image
generative model. It may include terminology or phrases that are not overtly descriptive but imply certain visual characteristics or
phenomena, requiring interpretative scientific reasoning to convey their meaning.

Explicit Prompt: Reformulate the input prompt into a precise, explicit, and descriptively accurate statement that aligns
with the intended visual outcome, incorporating the implied scientific nuances and characteristics.

Superficial Prompt: Construct an explicit interpretation of the input prompt that disregards the underlying scientific rea-
soning or implied elements. Focus only on the superficial or literal descriptive aspects.

Example: {“input prompt”: “an unripe apple”, “explicit prompt”: “a green apple”, “superficial prompt”: “a red apple”}

Here is the input prompt: [Your Input] and please output in the following format:

{“explicit prompt”: , “superficial prompt”: }

Figure B1. Framework For Prompt Collection. This figure presents a detailed workflow for generating explicit and superficial prompts
from implicit input prompts using GPT-4o [2].

SDXL SD3 DALLE3 FLUX.1[dev] SDXL SD3 DALLE3 FLUX.1[dev]

A bit of chromium nitrate powder ignites into a green flame on a surface, simple and realistic.

A heavily melting chocolate bar in the desert, losing its original shape as liquefied portions 
spread into a glossy area. The remaining solid slumps, soft and irregular.

A transparent box filled with water holds an iron block lying on the bottom, realistic.

A digital timer with a blank, inactive screen, displaying nothing.

Figure B2. Comparative Data Analysis. Models such as SDXL [21], SD3 [7], and DALLE3 [5] occasionally failed to align generated
images accurately with the provided textual descriptions. Meanwhile, FLUX.1[dev] [1] demonstrated superior performance, producing the
most realistic images among all evaluated models.

Language Multimodal Models (LMMs). As a baseline
for LMMs, we leverage GPT-4o-mini[2]. To assess
its performance, we conduct evaluations under two differ-
ent settings: one without employing the Chain-of-Thought
(CoT) reasoning approach[26] and another incorporating
CoT [26] to facilitate step-by-step reasoning. Specifically,
we prompt GPT-4o-mini[2] to choose between two im-
ages by selecting either ”the first” or ”the second.” Recog-
nizing that the model may exhibit insensitivity to the or-
der of image presentation, we mitigate this potential bias by
conducting the evaluation twice, each time with the order of
the input images reversed. We then compute the average ac-
curacy across these two evaluations to obtain a more robust
and reliable performance measure. The complete instruc-

tion set is detailed comprehensively in Figure F3.

Human Evaluation. To provide a human performance
baseline, we collected data from 10 human evaluators, all
of whom hold at least a college degree, primarily in science
or engineering disciplines. This selection criterion ensures
that the evaluators possess foundational scientific knowl-
edge necessary to perform inference tasks.

G. Additional Results of SciScore

In this section, we extend Table 1 by providing detailed
accuracy metrics for each category in Tables G4 and G3,
which allows for a more nuanced evaluation of SciS-



User Prompt

You will be presented with a textual prompt followed by two visual images. Your task is to critically analyze and compare both
images, selecting the one that most accurately aligns with and represents the overall meaning of the given prompt. First, you
should imagine how an ideal image would look based on the prompt, and then describe both images in detail. Finally, combining
your initial visualization with the descriptions of the two images, you should select the image that most effectively conveys the
intended meaning of the prompt, providing a reasoned justification for your choice.

Here is the input: {”prompt”: [Your Input Prompt], ”image-1”: [Your Input Image], ”image-2”: [Your Input Image]}

Please output in the following format:

{’imagination’: , ’description of image-1’: , ’description of image-2’: , ’justification for choice’: , ’final choice’: }

Figure F3. Instruction For GPT Evaluation. Text segments in red are specifically incorporated to facilitate CoT [26] reasoning.

Table G3. Performance comparison on Science-T2I S and across different categories. Bold values indicate the best performance.

Model ME DI EL SO IM EV AB LI FR SC RI RU LR WR BU GR

CLIP-H [12] 25.00 71.43 47.62 40.48 54.17 26.67 57.14 77.78 73.33 81.48 34.62 16.67 62.22 31.11 63.89 78.33
BLIPScore [15] 56.94 50.00 52.38 44.05 53.12 20.00 38.10 33.33 76.67 58.33 38.46 42.86 76.67 38.89 50.00 47.50

GPT-4o mini 36.11 77.38 82.14 35.71 65.63 100.00 33.33 76.39 58.89 97.22 53.85 95.24 96.67 83.33 56.94 71.31
+ CoT [26] 36.11 85.71 86.90 45.24 68.75 100.00 33.33 81.94 56.67 98.15 61.54 97.62 96.67 88.89 52.78 80.33

Human Eval 98.15 65.87 95.63 86.11 77.78 100.00 66.67 82.08 80.95 90.74 94.62 92.86 96.89 99.56 74.55 92.99
SciScore (ours) 100.00 97.62 100.00 90.48 68.75 100.00 71.43 100.00 97.78 100.00 100.00 100.00 100.00 100.00 66.67 98.33

core’s performance across different categories: light re-
quirement (LR),watering requirement (WR), ripeness (RI),
seasonal change (SC), flame reaction (FR), immiscibil-
ity (IM), rust (RU), absorption (AB), buoyancy (BU), diffu-
sion (DI), electricity (EL), evaporation (EV), gravity (GA),
liquidation (LI), melting (ME), solidification (SO).

The extended results demonstrate that SciScore consis-
tently outperforms baseline models across the majority of
tasks. Furthermore, SciScore achieves perfect accuracy
(100%) on several specific tasks, underscoring its effective-
ness and robustness in diverse scenarios.

H. Additional Analysis
In this section, we present further in-depth analysis pertain-
ing to the results and observations discussed in Section 6.

Performance of VLMs Approaches Random Guessing.
Both CLIP-H [10] and BLIPScore [15] demonstrate low
accuracy, hovering around 50, across both test sets. This
suboptimal performance is primarily attributable to the pre-
training phase, where the majority of textual data are highly
descriptive and explicitly reference their corresponding vi-
sual content. As a result, during inference, the text encoder
predominantly relies on these descriptive terms within the
prompt. When a test prompt is associated with two images
that both contain the main elements described in the prompt,
the model struggles to differentiate between them effec-
tively. This ambiguity leads to performance that is compara-

ble to random guessing, highlighting a significant limitation
in the current pretrained multimodal model. Furthermore,
Figure H4 provides a comparative analysis of the ROC
curves for SciScore, CLIP-H [12], and BLIPScore [15], il-
lustrating the relative performance of each model.

Limitations of LMMs in Vision-Based Scientific Reason-
ing. Despite being equipped with an extensive knowledge
base, GPT-4o-mini [2] fails to achieve satisfactory per-
formance in vision-based scientific reasoning tasks, even
when incorporating advanced techniques such as Chain-of-
Thought (CoT) prompting [26]. We posit that the primary
reasons for this inadequate performance are twofold. First,
the model exhibits a limited capacity to accurately capture
and interpret the complex visual features inherent in sci-
entific data, such as intricate diagrams, graphs, and micro-
scopic images, which are crucial for tasks that rely heavily
on visual information. This limitation hampers the model’s
ability to effectively integrate visual inputs with its existing
knowledge base, leading to superficial or incorrect interpre-
tations. Second, during the inference process, the model
tends to generate reasoning chains that contain internal con-
tradictions and inconsistencies, undermining the overall re-
liability and coherence of its scientific reasoning. These
contradictory reasoning patterns within the CoT [26] frame-
work suggest a fundamental challenge in maintaining logi-
cal consistency when processing and synthesizing informa-
tion from visual sources, especially when dealing with com-



Table G4. Performance comparison on Science-T2I C across different categories. Bold values indicate the best performance.

Model ME DI EL SO IM EV AB LI FR SC RI RU LR WR BU GR

CLIP-H [12] 66.67 78.57 21.43 57.14 50.00 0.00 64.29 66.67 46.67 88.89 75.00 35.71 80.00 60.00 58.33 75.00
BLIPScore [15] 58.33 50.00 28.57 42.86 62.50 50.00 50.00 29.17 60.00 75.00 54.17 57.14 53.33 46.67 62.50 40.00

GPT-4o mini 67.65 67.86 64.29 50.00 68.75 90.00 50.00 75.00 53.33 88.89 87.50 89.29 100.00 83.33 54.17 97.50
+ CoT [26] 67.65 85.71 85.71 57.14 68.75 95.00 32.14 79.17 50.00 88.89 87.50 92.86 100.00 93.33 41.67 100.00

Human Eval 91.03 66.75 90.87 77.55 86.61 95.71 78.57 76.79 77.14 96.83 83.78 92.86 88.57 84.76 83.33 98.57
SciScore (ours) 100.00 85.71 85.71 92.86 81.25 100.00 71.43 100.00 100.00 100.00 100.00 92.86 100.00 100.00 41.67 100.00

plex or ambiguous data. To substantiate these claims, we
present qualitative results in Figure H5, which illustrate spe-
cific instances where GPT-4o-mini [2] fails to accurately
interpret visual data and produces reasoning sequences that
are internally conflicting and logically flawed.

SciScore Achieves Human-Level Performance. This
enhanced efficacy can be primarily attributed to the inher-
ent limitations in the specialized expertise of human eval-
uators. Although these evaluators typically possess under-
graduate or advanced degrees and maintain a foundational
understanding of relevant scientific domains, their knowl-
edge bases are finite and often constrained by the bound-
aries of their specific areas of expertise. Such limitations
can impede their ability to accurately and comprehensively
assess all instances within diverse and extensive test sets,
particularly when confronted with novel or interdisciplinary
examples that lie outside their immediate knowledge scope.
In contrast, SciScore leverages extensive contextual knowl-
edge acquired from the training data, enabling it to general-
ize effectively and maintain consistent performance across
diverse and challenging test scenarios.

I. Qualitative Analysis of IEE
Qualitative results, as shown in Figure I6, demonstrate the
effectiveness of incorporating IEE loss at an appropriate
rate. The examples presented focus on the model’s ability
to capture fine-grained and nuanced details. In the first two
pairs, the task involves distinguishing between the frozen
and liquid states of various liquids, which relies on sub-
tle differences in transparency—frozen water exhibits lower
transparency compared to liquid water. The third example
pertains to a localized region within the image, where the
model must determine whether the screen within this small
region displays meaningful content. By incorporating IEE
loss, the model enhances its visual discrimination and con-
textual analysis capabilities, enabling it to make more accu-
rate and context-aware predictions.

J. Detailed Benchmarking Configuration
To facilitate equitable comparisons among the different T2I
models, we standardized the output image resolution to

1024 × 1024 pixels for all models. Table J5 summarizes
the configuration parameters used for each model, includ-
ing the guidance scale and the number of inference steps.

Table J5. Configurations of each T2I model

T2I Model Guidance Scale Inference Step

SDv1.5 [24] 7.5 50
SDXL [21] 5.0 50
SD3 [7] 7.0 28
FLUX.1[schnell] [1] 0.0 4
FLUX.1[dev] [1] 0.0 30

K. More Results on Benchmarking T2I Model
In this section, we further employ SciScore to benchmark
additional state-of-the-art text-to-image models. Due to
budgetary constraints, our evaluation is limited to open-
source models. The results are presented in Table K6.

L. More Results on Explicit Prompt Alignment
While SciScore effectively evaluates the alignment between
an implicit prompt and an image, it shares a common limita-
tion inherent to all CLIP-based models [22]: the scores are
only meaningful when comparing different pairs. In other
words, SciScore can indicate that one prompt-image pair
has better alignment than another but does not provide an
absolute measure. To overcome this limitation in the con-
text of the Explicit Prompt Alignment evaluation, we have
developed a systematic grading criterion to assess align-
ment comprehensively. Inspired by PhyBench [20], our
grading process is divided into two distinct aspects:
• Main Subject Alignment (Scene Score, SS): This aspect

evaluates whether all descriptive visual content specified
in the prompt is present in the corresponding image.

• Implicit Visual Alignment (Reality Score, RS): This as-
pect assesses whether the implicit visual elements, de-
rived from underlying scientific principles present in the
implicit prompt, are accurately represented in the image.

For illustrative purposes, we present examples in Fig-
ure Q7a. After establishing the grading criteria, we se-
lected all implicit prompts and their corresponding explicit
prompts from Science-T2I S and Science-T2I C. Using



(a) Science-T2IS (b) Science-T2IC

Figure H4. ROC Curve Analysis. The AUC scores for both BLIPScore [15] and CLIP-H [10] are relatively low, implying that these
models exhibit only marginally better performance than a random classifier. In contrast, SciScore demonstrates superior efficacy, with a
nearly optimal AUC score, indicating a high level of discriminative power and robustness in classification performance.

Table K6. Performance of T2I Models on SciScore.

T2I Model Size
Science-T2I S Science-T2I C

SP EP IP ND SP EP IP ND

Stable Diffusion 3.5
medium 20.40 34.29 24.11 26.71 24.67 36.14 29.32 40.54

large 20.11 33.72 24.39 31.45 24.68 35.11 29.28 44.10
turbo 19.37 31.57 22.71 27.38 23.86 33.49 27.38 36.55

text-to-image models, we generated two images for each
explicit prompt. These images were then evaluated by
GPT-4o-mini [2] following the instructions detailed in
Figure Q7b. This evaluation produced average scene scores
and reality scores with the experimental results summarized
in Table L8. To further substantiate the effectiveness of
the GPT-based evaluation, we examine the concordance be-
tween GPT assessments and human evaluations.

Relative Weakness in Scientific Scene Generation. The
results presented in Table L8 indicate that the average full
score (FS = SS + RS) is consistently lower than the scene
score across all models. This suggests that the models ex-
hibit weaker performance when generating outputs related
to complex scientific phenomena compared to simpler sub-
jects within prompts. A plausible explanation is that these
phenomena often involve intricate features such as spa-
tial relationships or uncommon object states (e.g., melting
chocolate, a cup of frozen water), which are underrepre-
sented in the models’ pretraining data.

Concordance Between GPT and Human. To assess the
effectiveness of GPT-based evaluation methods, we de-
signed an experiment aimed at demonstrating the alignment
between GPT’s judgments and those of human experts. Uti-
lizing an established evaluation framework, we applied the
same scoring methodology, which is detailed in Figure Q7b,
to Science-T2I S and Science-T2I C. Human experts as-
signed scores based on these criteria, and after reaching
consensus, we calculated the average scores. For explicit
images, the human experts assigned an average scene score
of 2 and an average reality score of 0; for superficial images,
the average scene score was 2 and the average reality score
was 3. Subsequently, we performed the same evaluation us-
ing GPT-4o-mini [2]. To quantify the correspondence
between GPT-4o-mini’s evaluations and those of the hu-
man experts, we calculated the human correspondence (HC)
for both scene and reality scores. The human correspon-
dence for the scene score is computed as:

HCSS =
SS

2.0
× 100 (1)

where SS is the scene score assigned by GPT-4o-mini.
For reality scores, we used two separate formulas to com-



Imagination: An ideal image would depict a nightstand 

with a vintage or modern night light that uses battery 

power or candles since there's no electricity…

Description of #1 image: The image shows a lamp with a 

round white bulb… and lacks any visible lighting effect…

Description of #2 image: The image features a warm, 

glowing lamp with a soft, rounded top, emitting a gentle 

orange light…

Justification for choice: Image #2 most accurately aligns 

with the prompt as it effectively conveys the concept of a 

night light without explicitly needing electricity…

Final choice: the second image

Which one better aligns with and 

represents the overall meaning of 

the given prompt

A powerless night light on the nightstand

Imagination: A small mound of copper carbonate powder 

on a tray with flames realistically igniting from it. The 

flames should have a warm, orange-yellow hue…

Description of #1 image: A mound of green powder in a 

bowl, with flames exhibiting green and yellow hues…

Description of #2 image: A mound of green powder on a 

wooden tray with flames that are predominantly yellow 

and orange… 

Justification for choice: Image #2 represents the prompt 

more accurately as it displays a realistic flame igniting 

from the powder. 

Final choice: the second image

Which one better aligns with and 

represents the overall meaning of 

the given prompt

Copper carbonate burns on the tray

Imagination: An image showing a clear bowl filled with 

beer, surrounded by a snowy landscape, with beads of 

condensation on the outside of the bowl…

Description of #1 image: The first image features a glass 

bowl filled with an amber beer sitting on a bed of snow…

Description of #2 image: There’s a glass bowl of beer, 

but it is topped with a substantial mound of icy snow, 

making the beer seem partially frozen…

Justification for choice: The first image more accurately 

captures the prompt's intent by effectively highlighting the 

beer in a realistic outdoor snowy setting…

Final choice: the first image

Which one better aligns with and 

represents the overall meaning of 

the given prompt

A bowl of beer in subzero environment

Imagination: An ideal image would portray a healthy, 

vibrant saponaria plant, ideally situated on a windowsill 

bathed in natural light…

Description of #1 image: This image shows a worn 

ceramic pitcher containing a bouquet of dried flowers, 

which have a pale and faded appearance…

Description of #2 image: This image features a potted 

plant with multiple large, bright coral-colored flowers and 

green leaves. The plant appears healthy…

Justification for choice: Image #2 most accurately reflects 

the essence of the prompt…

Final choice: the second image

Which one better aligns with and 

represents the overall meaning of 

the given prompt

A rarely watered saponaria by window

(a) Reasoning Failure. GPT-4o-mini [2] inaccurately infers the target image by misinterpreting the input prompt and neglecting the underlying scientific
principles embedded within it. Instead of employing a systematic reasoning process, it relies predominantly on intuitive imagination.

Imagination: An ideal image of a ginkgo tree in spring 

would feature a vibrant tree with bright green leaves that 

reflect the freshness of spring…

Description of #1 image: This image depicts a ginkgo 

tree with striking golden-yellow leaves, set against a 

clearer sky filled with scattered clouds. 

Description of #2 image: This image features a large 

tree with bright yellow foliage and a sturdy black trunk…

Justification for choice: The first image better aligns with 

the prompt’s request due to the vibrant golden-yellow 

leaves representing the seasonal transition…

Final choice: the first image

Which one better aligns with and 

represents the overall meaning of 

the given prompt

A ginkgo tree in spring

Imagination: An ideal image would depict a transparent 

box filled with clear water, showcasing a vibrant volleyball 

floating inside it…

Description of #1 image: A transparent box filled with 

clear water contains a colored volleyball. The volleyball 

appears to be slightly floating within the water…

Description of #2 image: The second image also features 

a transparent box filled with water. The volleyball is fully 

submerged, with only its upper half visible… 

Justification for choice: The first image best represents 

the prompt because it floats engagingly in the water…

Final choice: the first image

Which one better aligns with and 

represents the overall meaning of 

the given prompt

A volleyball in a box filled with water 

Imagination: An image showing a clear glass filled with a 

distinct layer of red wine and mineral oil…

Description of #1 image: The glass is clear and filled with a 

reddish liquid, but there is no visible layer of mineral oil…

Description of #2 image: The glass is clear and filled with a 

rich red liquid, showing a darker color with a cleaner look 

compared to image #1…

Justification for choice: Neither image accurately represents 

the prompt, as both lack the distinct layering of red wine and 

mineral oil…

Final choice: the second image

Which one better aligns with and 

represents the overall meaning of 

the given prompt

A glass filled with red wine and mineral oil

Imagination: An ideal image would depict a clear, 

transparent box filled with water. Inside, a laptop would 

be partially submerged, with clear water around it.

Description of #1 image: This image shows a transparent 

box filled with clear blue water, containing a laptop that 

appears to be partially submerged. 

Description of #2 image: In this image, a transparent box 

is also filled with clear blue water, but the laptop appears 

more submerged compared to the first image.

Justification for choice: The first image is chosen as it 

more effectively aligns with the prompt…

Final choice: the first image

Which one better aligns with and 

represents the overall meaning of 

the given prompt

A laptop in a box filled with water

(b) Visual Limitation. GPT-4o-mini [2] inaccurately describes the image, thereby impeding the reasoning process. Specifically, for tasks involving
spatial relationships, it fails to make correct judgments, resulting in erroneous interpretations of positional dynamics within the visual content.

Figure H5. Qualitative Failure Cases of GPT. In both cases, the CoT [26] reasoning approach from Figure F3 is applied, but errors in
either interpretation or visual comprehension impact the final decision. Green text indicates correct inference, while red text marks errors.

pute the correspondence for explicit and superficial images.
Specifically, for superficial images (SI), the human corre-

spondence for reality score is calculated as:

HCSI
RS =

(
1− RS

3.0

)
× 100 (2)



A cup of water in a polar 
environment

A powerless camera 
screen beside windowsill

A carafe of beer in a 
subzero environment

w
 IE

E
w

/o
 IE

E

Figure I6. Qualitative Analysis of IEE. Images enclosed by green
borders denote the correct selection in each pair.

For explicit images (EI), the human correspondence is:

HCEI
RS =

RS

3.0
× 100 (3)

The comparative results are shown in Table L7.

Table L7. Concordance Between GPT-4o-mini and Human
Experts. The average agreement rate of over 80% demonstrates
GPT-4o’s strong alignment with human expert assessments of
scene and reality aspects, highlighting its reliability.

Dataset IT SS HCSS RS HCRS

Science-T2I S EI 1.827 91.13 2.731 91.03
SI 1.635 81.74 0.476 84.13

Science-T2I C EI 1.855 92.73 2.490 83.00
SI 1.630 81.50 0.636 78.79

M. Details of Two-Stage Training
In this section, we present a detailed overview of our two-
stage training framework, which integrates SFT and masked
online fine-tuning to enhance flow matching models.

Supervised Fine-tuning (SFT). Flow matching models
[17] are continuous-time generative models that define a
time-dependent velocity field v(xt, t) to transport samples
from a noise distribution p1 to data distribution p0 over a
time interval t ∈ [0, 1]. The transformation is governed by
the ordinary differential equation (ODE):

dxt

dt
= v(xt, t), (4)

with the initial condition x1 ∼ p1. The forward process is
constructed as:

xt = αtx0 + βtϵ, ϵ ∼ N (0, I), (5)

where α0 = 1, β0 = 0, α1 = 0, and β1 = 1, ensuring
the consistency of the marginal distributions with the ini-
tial and terminal conditions. The velocity field v(xt, t) is
represented as the sum of two conditional expectations:

v(x, t) = α̇tE[x∗|xt = x] + β̇tE[ϵ|xt = x], (6)

which can be approximated by the model vθ(x, t) by mini-
mizing the following training objective:

LSFT (θ) := Ex∗,ϵ,t

[
∥vθ(xt, t)− α̇tx∗ − β̇tϵ∥2

]
(7)

Direct Preference Optimization (DPO). RLHF aims to
optimize a conditional distribution pθ(x0|c) such that the
expected reward r(c, x0) is maximized, while simultane-
ously regularizing the KL-divergence from a reference dis-
tribution pref. This objective is formulated as:

max
pθ

Ec,x0∼pθ(x0|c) [r(c, x0)]− βDKL [pθ(x0|c)∥pref(x0|c)]
(8)

where the hyper-parameter β controls regularization. Ac-
cording to [23], the unique global optimal solution p∗θ to
this optimization problem is given by:

p∗θ(x0|c) = pref(x0|c) exp
(
r(c, x0)

β

)
/Z(c) (9)

where Z(c) =
∑

x0
pref(x0|c) exp

(
r(c,x0)

β

)
is partition

function. Then the reward function can be expressed as:

r(c, x0) = β log
p∗θ(x0|c)
pref(x0|c)

+ β logZ(c) (10)

To model human preferences, the Bradley-Terry (BT)
model is employed, which represents the probability of one
outcome being preferred over another as:

pBT (x
w
0 ≻ xl

0|c) = σ(r(c, xw
0 )− r(c, xl

0)) (11)

where σ is the sigmoid function, xw
0 is the preferred out-

come, and xl
0 is the less preferred one.. r(c, x0) can be pa-

rameterized by a neural network ϕ and estimated via maxi-
mum likelihood training for binary classification:

LBT (ϕ) = Ec,xw
0 ,xl

0

[
log σ

(
rϕ(c, x

l
0)− rϕ(c, x

w
0 )

)]
(12)

By leveraging the relationship between the reward function
and the optimal policy p∗θ , the DPO objective is derived as:

LDPO(θ) = −Ec,xw
0 ,xl

0

[
logσ

(
β log

pθ(x
w
0 |c)

pref(xw
0 |c)

−β log
pθ(x

l
0|c)

pref(xl
0|c)

)]
(13)



Table L8. Performance of T2I Models on Explicit Prompt Alignment. The Full Score (FS) is the sum of the Scene Score (SS) and the
Reality Score (RS): FS = SS + RS. The Percentage of Expectation (PoE) is calculated by dividing the score by its expected value.

T2I Model Science-T2I S Science-T2I C

SS PoE FS PoE SS PoE FS PoE

Stable Diffusion v1.5 [24] 1.298 64.90 2.470 49.40 1.261 63.05 2.446 48.92
Stable Diffusion XL [21] 1.718 85.90 3.510 70.20 1.679 83.95 3.360 67.20
Stable Diffusion 3 [7] 1.786 89.30 3.898 77.96 1.780 89.00 3.836 76.72
FLUX.1[schnell] [1] 1.730 86.50 3.730 74.60 1.772 88.60 3.825 76.50
FLUX.1[dev] [1] 1.720 86.00 3.641 72.82 1.702 85.10 3.676 73.52

Expectation 2.000 100.00 5.000 100.00 2.000 100.00 5.000 100.00

Choice of σt. We determine the value of σt by adhering
to the methodology presented in [13]. Initially, we define
the hyperparameters Schurn, Smin, Smax, and Snoise. Subse-
quently, we define γt as follows:

γt =

{
min

(
Schurn ·∆t,

√
2− 1

)
if t ∈ [Smin, Smax]

0 otherwise,
(14)

where ∆t represents the timestep difference between con-
secutive sampling steps. Following this, we define σt by

σt = Snoise ·
√
γ2
t + 2γt · (1− t). (15)

Pre-Training Subject Extraction. We integrate Ground-
ingDINO [18] to facilitate the extraction of masks from im-
ages. To streamline the process, we initially employ LLM
to identify and extract the relevant subjects from the train-
ing prompt set prior to the training phase. The extracted
subjects are subsequently provided to GroundingDINO [18]
during training to generate corresponding masks. These
masks are then utilized to apply gradient masking.

Gradient Masking. The mask generated by Ground-
ingDINO [18] is derived from the resolution of the RGB im-
age. However, gradients are computed within the model’s
latent space, as detailed in LDM [24]. The connection be-
tween the RGB image and the latent space is facilitated by
a pretrained Variational Autoencoder (VAE) [14], which in-
herently exhibits localist properties. Specifically, let the la-
tent representation have dimensions (Hl,Wl, Cl) and the
corresponding decoded image have dimensions (H,W,C).
If the mask extracted from the image is defined by the
bounding box coordinates (x1, y1, x2, y2), then the corre-
sponding mask in the latent space is computed as:(x1

H
·Hl,

y1
W

·Wl,
x2

H
·Hl,

y2
W

·Wl

)
(16)

This latent-space mask is subsequently applied to the gradi-
ents of the model to modulate the training process.

Padding Technique. Certain tasks require the careful
consideration of positional relationships rather than solely
the object’s internal state. For example, in the gravity task,
the object’s position relative to the ground is critically im-
portant, making the use of the object mask alone insuffi-
cient for accurate analysis. To address this limitation, we
extend the height and width dimensions of the mask by an
additional 10%. This strategic padding ensures that the sur-
rounding positional context is adequately captured, improv-
ing task performance and contextual understanding.

N. Two-Stage Training Settings

In this section, we detail the hyper-parameter configurations
employed in our two-stage training framework for the T2I
model, which is presented in Table N9.

Table N9. Hyper-parameter settings for T2I Model fine-tuning.

Hyper-parameters SFT Online FT

batch size 16 8
learning rate 1× 10−4 6× 10−4

training steps 2456 103
optimizer AdamW [19] AdamW [19]
gradient accumulation 8 2
LoRA rank 16 16
Schurn / 0.1
Smin, Smax / 0,∞
Snoise / 1.0
β / 10



O. Additional Results of Online Fine-tuning

To further assess the effectiveness of the proposed algo-
rithm, we conducted additional experiments utilizing differ-
ent reward models. Specifically, we employed the LAION
aesthetic predictor [4] and ImageReward [27] as the reward
functions for our comprehensive evaluations. It is important
to note that, in these experiments, we did not implement the
masking strategy described in the main text.

Training Setting. All configurations align with those pre-
sented in Table N9, except for the specific settings detailed
below. We fine-tuned the FLUX.1[schnell] [1] using four
inference steps. For training with the LAION aesthetic pre-
dictor [4], each training step involved sampling 64 images,
employing a learning rate of 3×10−4, and conducting train-
ing over 164 steps. When utilizing ImageReward [27] for
training, we similarly sampled 64 images per step, applied
a learning rate of 1× 10−4, implemented gradient accumu-
lation step of 8, and trained for a total of 550 steps. Adher-
ing to the configuration outlined in DDPO [6], the training
prompt set comprised 45 distinct animal categories.

Evaluation Setting. The test prompt set consisted of an
additional 10 animal categories not present in the training
set. For each prompt, we generated 100 images and calcu-
lated the average reward assigned by the respective reward
model, which served as our performance metric. The fi-
nal experimental results, showcasing the average rewards
achieved on the test set, are presented in Table O10.

Table O10. Comparison of Average Rewards. The online fine-
tuning approach consistently outperforms the baseline, demon-
strating the effectiveness of the proposed algorithm.

Method LAION [4] ImageReward [27]

FLUX.1[schnell] 5.855 0.949
+OFT 6.074 1.023

P. Additional Observations

During our investigation, particularly in the data curation
phase, we observed that all the scientific phenomena in-
volved can be uniformly represented using a subject +
condition framework. Specifically, all tasks involve im-
plicit prompts structured in this manner. For example, the
prompt an unripe apple comprises the subject apple and the
condition unripe; similarly, a laptop without electricity in-
cludes the subject laptop and the condition without elec-
tricity. Building on this observation, we identified that, for
each task, the component requiring scientific reasoning can

be closely associated either with the subject or with the con-
dition. We classify these tasks as subject-oriented tasks and
condition-oriented tasks, depending on the reasoning focus.

Subject-Oriented Tasks. In subject-oriented tasks, the
necessity for scientific reasoning arises primarily from the
subject’s properties. In these tasks, different subjects un-
der the same condition exhibit different visual features due
to their inherent characteristics. For example, the buoyancy
task is subject-oriented because different objects placed in
water either float or sink depending on their densities rela-
tive to water, which is an intrinsic property of the subjects.

Condition-Oriented Tasks. In condition-oriented tasks,
scientific reasoning is predominantly associated with the
condition applied to the subject. In these tasks, varying con-
ditions applied to the same subject result in different visual
features. For instance, the gravity task is condition-oriented
since a subject exhibits different behaviors under different
gravitational conditions: it floats in the air under ”without
gravity” and rests on the ground under ”normal gravity.”

Q. Limitations

Building upon the concepts introduced in Section P, we
have observed that SciScore performs well on condition-
oriented tasks following training, which is anticipated.
However, our observations indicate that SciScore does not
handle subject-oriented tasks effectively. A notable exam-
ple is its weaker performance compared to humans on the
buoyancy task, as illustrated in Table G4 and Table G3.

R. Detailed Task Descriptions

In this section, we provide detailed descriptions of the
tasks incorporated into our study. These tasks are de-
signed to evaluate various biological, chemical, and phys-
ical phenomena presented in Science-T2I. Additionally, il-
lustrative examples from Science-T2I are presented in Fig-
ure R9,R10,R11 to demonstrate the tasks.
• Light requirement: Plants change color and leaf size

based on adequate or insufficient light exposure.
• Watering requirement: Plants exhibit differences in fo-

liage health, wilting, and growth when receiving suffi-
cient or inadequate water, leading to reduced growth.

• Ripeness: Fruits alter their color and texture significantly
when they are ripe compared to when they are unripe.

• Seasonal change: Plants display variations in leaf color,
size, and blooming patterns across different seasons.

• Flame reaction: Chemical substances naturally produce
their distinct flame colors vividly when burned.

• Immiscibility: Two liquids either mix uniformly or sep-
arate into layers based on their chemical properties.



Sampled Examples

Example1: [
“Prompt”: “A transparent water-filled box holds a basketball, depicted realistically.”,
“Scene Grading”: {
- 0 point: The picture does not feature a basketball inside a transparent box filled with water in any capacity.
- 1 point: The picture shows a basketball, but it is not inside a transparent box. Alternatively, the basketball are in a transparent
box, but there is no water present.
- 2 points: The picture accurately depicts a basketball inside a transparent box filled with water.
},
“Reality Grading”: {
- 0 point: The basketball is completely sinking to the bottom of the water.
- 1-2 point: The basketball is completely submerging in the water, but doesn’t reach the bottom. Less mistakes will earn a higher
score.
- 3 points: The picture shows basketball floating on the surface of the water.
}]

Example2: [
“Prompt”: “A clear glass filled with water and oil, simple and realistic.”,
“Scene Grading”: {
- 0 point: There is no glass or no liquid in the glass, or the scene is irrelevant (e.g., the focus is not on the glass or liquid at all).
- 1 point: The glass contains liquid, but the focus on the liquid or the glass is unclear, or there are distracting elements in the scene.
- 2 points: The glass is clearly depicted with some liquid in it, with no distractions, offering a simple, clear, and realistic depiction.”
},
“Reality Grading”:{
- 0 points: Liquids are mixed or incorrectly positioned (e.g., water and oil blended or misplaced).
- 1 point: Water and oil are present but with partial inaccuracies in separation or positioning (e.g., water floating on oil, blurred
boundaries).
- 2 points: Liquids are correctly positioned with visible separation (oil atop water), but minor deviations from realism exist (e.g.,
slight issues with clarity or texture).
- 3 points: Fully realistic depiction with correct positioning (oil floating on water) and clear separation.
}]

(a) Representative Samples. Inspired by PhyBench [20], We present a two-tiered grading framework comprising ”Scene Grading” and ”Reality Grading.”
The first level, Scene Grading, assesses fundamental alignment by verifying whether the primary subjects specified in the prompt are accurately depicted
in the generated image. The second level, Reality Grading, evaluates the degree to which the generated image aligns with the implicit physical realities or
expectations inherent in the implicit prompt.

User Prompt

Imagine you are an experienced scientist. Begin by evaluating the provided image using the specified scene
composition criteria. If the image does not fully satisfy these criteria, assign a reality score of 0. However, if the
scene meets all the criteria, proceed to assess its realism based on the given reality scoring guidelines, disregarding
stylistic aspects and minor background details. Please first describe the image in detail and then adhere strictly to
these criteria to ensure an accurate scoring of the image.

Here is the input: {“Prompt”: [Your Input Prompt], “Scene Grading”: [Your Input Scene Grading], “Reality
Grading”: [Your Input Reality Grading], “Image”: [Your Input Image]}. Please present your evaluation in the
following format: {“description”:, “scene score”: , “reality score”: }

(b) Image Evaluation Instruction. In the context of the two-tiered grading framework, it is unnecessary to assess reality grading when an image fails to
achieve a full score in scene grading. This is because reality grading presupposes that the main subject specified in the prompt is present in the image.
Therefore, we assign a reality grading score of zero to any image that does not attain a full score in scene grading.

Figure Q7. Sample prompts accompanied by corresponding evaluation criteria and instructions for image assessment



A lamp without power 
on a bedside table

An old bronze 
compass on the table

A ginkgo tree in 
winter by the farm 

A digital thermometer 
without electricity 

A can on the soccer 
field without gravity

A potted lily kept in a 
dark room for weeks

A rarely watered rose 
beside the window

A
ft

er
Be

fo
re

⚛ Electricity 🧪 Rust 🌳 Seasonal Change ⚛ Electricity ⚛ Gravity 🌳 Water Requirement 🌳 Light Requirement

A bowl of water at 
frozen environment

An old copper  
ball on the shelf

A little red dye added 
into a glass of water

A drop of green dye 
touches a white cloth

An unripe mango  
on the counter

A metal ball in a 
humid environment

A clock on pavement 
without gravity

A
ft

er
Be

fo
re

⚛ Solidification 🧪 Rust ⚛ Diffusion ⚛ Absorption 🌳 Ripeness ⚛ Liquidation ⚛ Gravity

A frisbee on the grass 
without gravity

A rarely watered 
lavender on the table

A willow tree in winter 
stands near the bridge

A glass filled with 
water and olive oil

An old steel ingot on 
the couch

A premature grape in 
the garden

A MP3 player without 
electricity on the desk

A
ft

er
Be

fo
re

⚛ Gravity 🌳 Water Requirement 🌳 Seasonal Change 🧪 Immiscibility 🧪 Rust 🌳 Ripeness ⚛ Electricity

Figure Q8. Additional Generated Samples. Each pair of images is produced using the same random seed to ensure consistency.

• Rust: Metals appear shiny, smooth, and reflective before
oxidation, and corroded, flaky, and brittle after rusting.

• Absorption: A solid either soaks up a liquid or repels it,
depending on their material properties.

• Buoyancy: Substances either float on or sink in water

based on their density relative to water.
• Diffusion: When a small amount of liquid is added, it

either disperses uniformly or remains separate.
• Electricity: Electronic products change appearance, such

as glowing or sparking, when electric current is applied.



• Evaporation: Liquids boil and produce vapor when
reaching boiling points; otherwise, they remain calm.

• Gravity: Objects appear differently positioned when in-
fluenced by gravity versus in a gravity-free environment.

• Liquidation: Air condenses into water droplets on sur-
faces cooled below room temperature.

• Melting: Objects transition from solid to liquid, changing
shape and structure upon reaching melting points.

• Solidification: Liquids become solids, altering their form
and texture when cooled below solidification points.
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A transparent box filled with water holds an 
{apple} floating on the surface, realistic. The 

background is completely empty.

A transparent box filled with water holds a 
submerged {apple}, realistic. The 
background is completely empty.

⚛ Buoyancy

A transparent water-
filled box holds an 

{apple} in a simple and 
empty background, 

depicted realistically.

EP

IP

IP

SP

A bit of {orange dye} spreads and diffuses 
into the glass of water, in a simple and 

realistic way.

A glass filled with {orange} water, presented 
in a straightforward and realistic way.

⚛ Diffusion

A little bit {orange 
dye} added to a glass 
of water, simple and 

realistic.

EP

IP

IP

SP

A little bit {orange 
dye} added to a glass 
of water, simple and 

realistic.

IP
A bit of {orange dye} spreads and diffuses 

into the glass of water, in a simple and 
realistic way.

A glass filled with {orange} water, presented 
in a straightforward and realistic way.

EP
SP

A realistic scene of a {pillow} floating in the 

A realistic scene of a {pillow} lying on the 
ground within a simple space. The 
background is completely empty.

⚛ Gravity

A {pillow} in a simple 
space without gravity, 
simple and realistic.

EP
IP

IP

SP

A {pillow} in a simple 
space without gravity, 
simple and realistic.

IP
A realistic scene of a {pillow} floating in the 
air within a simple space. The background is 

completely empty.

A realistic scene of a {pillow} lying on the 
ground within a simple space. The 
background is completely empty.

EP
SP

⚛ Melting

IP

A heavily melting {butter stick} on a heated 
pan, losing its original shape as liquefied 

portions spread into a glossy area.

A solid {butter stick} on a heated pan, it 
remains firm with sharp edges and a stable 
shape, crafting a simple and realistic scene.

EP
SP

A {butter stick} on a 
heated pan, simple 

and realistic.

IP

A bit of {copper} powder ignites into a 
{green} flame on a surface, the scene simple 

and realistic.

A bit of {copper} powder ignites into a 
{yellow} flame on a surface, in a simple and 

realistic way.

🧪 Flame Reaction

A bit of {copper} 
powder ignites on a 
surface, in a simple 
and realistic way.

EP

IP

IP

SP

A bit of {copper} 
powder ignites on a 
surface, in a simple 
and realistic way.

IP
A bit of {copper} powder ignites into a 

{green} flame on a surface, the scene simple 
and realistic.

A bit of {copper} powder ignites into a 
{green} flame on a surface, the scene simple 

and realistic.

EP
SP

A clean and distinct separation of layers is 
visible in the glass, with {milk} at the bottom 

and {oil} floating on top, offering a simple 
and realistic scene.

A clear glass filled with {oil/milk}, 
straightforward and realistic.

🧪 Immiscibility

A clear glass filled with 
{milk and oil}, simple 

and realistic.

EP

IP

IP

SP

A clear glass filled with 
{milk and oil}, simple 

and realistic.

IP
A clean and distinct separation of layers is 

visible in the glass, with {milk} at the bottom 
and {oil} floating on top.

A clear glass filled with {oil/milk}, 
straightforward and realistic.

EP
SP

Figure R9. Several examples from Science-T2I. ’EP’ denotes explicit prompts (yellow blocks), ’SP’ denotes superficial prompts (blue
blocks), and ’IP’ denotes implicit prompts (grey blocks).



A potted {lily} sits in a dimly lit room, its 
petals wilted and curling with brown edges, 

while the stems sag.

A potted {lily} stands tall in a dimly lit room, 
its vivid petals brimming with life and vitality. 

Strong, upright stems hold fresh petals.

🌳 Light Requirement

A potted {lily} kept in 
a dark room for weeks, 

simple and realistic.

EP

IP

IP

SP

A potted {lily} kept in a 
dark room for weeks, 
simple and realistic.

IP
A potted {lily} sits in a dimly lit room, its 

petals wilted and curling with brown edges, 
while the stems sag.

A potted {lily} stands tall in a dimly lit room, 
its vivid petals brimming with life and vitality. 

Strong, upright stems hold fresh petals.

EP
SP

A {rose} with wilted petals, curled and 
browned at the edges, droops from its 

stems, giving it a dry, decaying appearance. 
The petals have faded to dull, lifeless tones.

A blooming {rose} with vibrant petals stands 
tall on strong, upright stems, radiating 

health. 

🌳 Water Requirement

A rarely watered 
{rose}, presented in a 
simple and realistic 

way.

EP

IP

IP

SP

A rarely watered 
{rose}, presented in a 
simple and realistic 

way.

IP
A {rose} with wilted petals, curled and 
browned at the edges, droops from its 

stems, giving it a dry, decaying appearance.

A blooming {rose} with vibrant petals stands 
tall on strong, upright stems, radiating 

health. 

EP
SP

A {carafe} of frozen {water} in a glacier, 
simple and realistic.

A {carafe} of fully liquid {water} in a glacier, 
simple and realistic.

⚛ Solidification

A {carafe} of {water} in 
a glacier, simple and 

realistic.

EP

IP

IP

SP

A {carafe} of {water} in 
a glacier, simple and 

realistic.

IP
A {carafe} of frozen {water} in a glacier, 

simple and realistic.

A {carafe} of fully liquid {water} in a glacier, 
simple and realistic.

EP
SP

A green {tomato} with firm, smooth, and 
shiny skin is simple, clear, and realistic.

A red {tomato}, making it simple and 
realistic.

⚛ Ripeness

A unripe {tomato}, 
simple and realistic.

EP
IP

IP

SP

A unripe {tomato}, 
simple and realistic.

IP
A green {tomato} with firm, smooth, and 
shiny skin is simple, clear, and realistic.

A red {tomato}, making it simple and 
realistic.

EP
SP

⚛ Absorption

A drop of {blue dye} 
touches a napkin, 

simple and realistic.

IP

A drop of {blue dye} 
touches a napkin, 

simple and realistic.

IP
The {blue dye} spreads, creating a diffused 

blue stain on the napkin, simple and realistic.

The {blue dye} drop stays as a tiny, focused 
spot on the napkin, creating a scene that's 

simple and realistic.

EP
SP

The {iron hammer} has a look with a {red 
rust}, revealing its age and corrosion. 

Textured oxidation adds rough, uneven 
tones to the surface.

A realistic {iron hammer} stands out against 
a completely blank background, simple and 

realistic.

🧪 Chemistry --- Rust

A {iron hammer} that 
has been exposed to 
oxygen for decades, 
simple and realistic.

EP
IP

IP

SP

A {iron hammer} that 
has been exposed to 
oxygen for decades, 
simple and realistic.

IP
The {iron hammer} has a look with a {red 

rust}, revealing its age and corrosion.

A realistic {iron hammer} stands out against a 
completely blank background, simple and 

realistic.

EP
SP

Figure R10. Several examples from Science-T2I. ’EP’ denotes explicit prompts (yellow blocks), ’SP’ denotes superficial prompts (blue
blocks), and ’IP’ denotes implicit prompts (grey blocks).



A {laptop} with a blank, inactive screen, 
displaying nothing, simple and realistic.

A {laptop} with an active screen, displaying 
content, simple and realistic.

⚛ Electricity

A {laptop} without 
electricity, simple and 

realistic.

EP

IP

IP

SP

A {laptop} without 
electricity, simple and 

realistic.

IP
A {laptop} with a blank, inactive screen, 
displaying nothing, simple and realistic.

A {laptop} with an active screen, displaying 
content, simple and realistic.

EP
SP

🌳 Seasonal Change

IP

An {ash tree} in winter 
with high realism.

IP
A whole view of an {ash tree} in winter is 
depicted with bare, leafless branches and 

some snow coverage, realistic.

A whole view of an {ash tree} in winter is 
depicted with vibrant green leaves and some 

snow coverage, realistic.

EP
SP

⚛ Evaporation

IP

A bowl of {coffee} at 
over hundred of 
degrees Celsius, 

simple and realistic.

IP
A bowl holds {coffee} at a vigorous rolling 

boil, steam flowing upward while tiny 
bubbles continuously reach the surface. 

A bowl of normal {coffee}, simple and 
realistic.

EP
SP

A {mirror} with many small beads of water 
forming on its surface, simple and realistic.

A {mirror} is shown in a simple and realistic 
way.

⚛ Liquidation

A {mirror} in a 
extremely humid and 

room-temperature 
environment, simple 

and realistic.

EP
IP

IP

SP

A {mirror} in a 
extremely humid and 

room-temperature 
environment, simple 

and realistic.

IP
A {mirror} with many small beads of water 
forming on its surface, simple and realistic.

A {mirror} is shown in a simple and realistic 
way.

EP
SP

Figure R11. Several examples from Science-T2I. ’EP’ denotes explicit prompts (yellow blocks), ’SP’ denotes superficial prompts (blue
blocks), and ’IP’ denotes implicit prompts (grey blocks).
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