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A. Implementation Details
In this section, we provide additional details to facilitate
the implementation and reproducibility of the proposed
SeeGround framework.

A.1. Extended Definitions of Visual Attribute
In the main body of this paper, we introduce several key
visual attributes that are essential for 3D Visual Grounding
(3DVG) tasks, including attributes such as texture, shape,
viewpoint, and order. Tab. A expands upon these attributes,
providing more detailed definitions and additional examples
to clarify their roles in 3DVG tasks.

This table highlights the indispensable role of visual at-
tributes in disambiguating object references that rely on de-
tailed visual or spatial cues. However, prior approaches
[11, 12], particularly those based on large language models
(LLMs), often overlook these attributes due to their reliance
on textual inputs alone. Without access to visual informa-
tion, it becomes challenging for such models to interpret
queries like “the black keyboard” or “the chair
with the tall back” This limitation underscores the
necessity of incorporating visual information into 3DVG
tasks to resolve ambiguities and enrich the alignment be-
tween textual queries and 3D spatial contexts.

We hope these analyses could provide insights for future
exploration of multimodal systems that integrate textual and
visual information in 3DVG.

A.2. Details of Textual Prompt Design
In this work, we design useful prompts to facilitate the
learning of visual attributes for 3DVG. As illustrated in
Tab. B, these prompts include several key components
which are summarized as follows:
• Role Specification: The prompt begins by defining the

assistant’s role as an entity designed to identify objects
based on images and descriptions. This specification is
crucial for setting the context and ensuring that the assis-
tant’s actions align with the intended task.

• Visual Contextualization: The prompt provides a de-
scription of the image, indicating that it is a rendered im-
age of a room. This contextualization helps the assistant
to understand the spatial layout and the perspective from
which the objects should be identified, which is essential
for accurate object recognition.

• Object Labeling & Spatial Information: Each object
within the image is labeled with a unique identifier (ID)
in red, accompanied by detailed spatial information. This
includes object type, dimensions, and center coordinates.
Such detailed labeling is vital for distinguishing between
objects, especially in complex scenes where multiple ob-
jects may have similar appearances.

• Response Protocol: The prompt specifies a structured
format for the assistant’s response, requiring a detailed
explanation of the features or context that led to the
decision. The response format, “Predicted ID:
<ID>Explanation: <explanation>”, ensures
that the assistant’s reasoning is transparent and veri-
fiable. This protocol is exemplified by the descrip-
tion, “This is the large conference table
with many chairs”, which serves as a practical ap-
plication of the identification process.
These components are meticulously designed to guide

the assistant in leveraging both visual and descriptive in-
formation for object identification. The structured for-
mat not only ensures clarity and consistency in the assis-
tant’s responses but also facilitates effective communica-
tion and decision-making. By providing a comprehensive
framework, the prompts enable the assistant to perform
complex identification tasks with precision and reliability,
which is critical in applications requiring high accuracy and
interpret-ability.
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Table A. Detailed explanations of Key Visual Attributes in 3D Visual Grounding (3DVG) tasks. In 3DVG, the model must understand
the relationships between visual attributes and spatial descriptions in the query to correctly identify and locate the target object. These
attributes – color/texture, shape, viewpoint, order, orientation, state, and functionality – serve as crucial cues that guide the model.

Attribute Definition Examples

(a) Texture

Refers to the visual appearance of an
object’s surface, including its color and
material properties. These attributes help
distinguish objects with similar shapes but
different visual properties.

• “The black keyboard.”
• “The cart you’re looking for is white on top.”
• “The floral chair.”
• “The correct door has vertical lines on it.”
• “Choose the glass doors.”
• “A brown box with a white label on the front

of the box.”

(b) Shape

Describes the geometric form of an
object, which allows for differentiation
between objects with similar class names
and sizes but different geometric
structures.

• “The round trash can.”
• “ double door.”
• “ L-shaped couch.”
• “The chair with the tall back.”
• “Choose the three seater couch.”
• “The correct couch has a 90-degree angle

bend in it it is not straight.”

(c) Viewpoint

Refers to the perspective or angle from
which an object or scene is observed.
Viewpoint impacts the visibility and
relative positioning of objects.

• “When facing the windows, the one on the left.”
• “When entering the room, the sofa is on the

right side.”
• “ Facing the TV, the chair on the right.”
• “When sitting at the bed, the lamp is on the

left corner.”

(d) Orientation

Describes the rotational alignment of an
object in 3D space, which is essential for
distinguishing objects that may appear but
are oriented differently.

• “The table is tilted slightly.”
• “the keyboard at an angle.”
• “The chair whose back is facing the

window.”
• “The picture frame is leaning at an angle on the

shelf.”

(e) State

Refers to the current condition or status
of an object (e.g., open/closed,
active/inactive), helping to differentiate
objects that may appear similar but have
different functional states.

• “The open door.”
• “The closed book on the desk.”
• “The lit candle on the shelf.”
• “The empty cup on the counter.”
• “The stained carpet in the living room.”

(f) Order

Refers to the relative positioning or
sequence of objects within a scene. This
is important for identifying objects in a
specific spatial arrangement.

• “Of the group of pictures, choose the second
one from the right.”

• “In the row of chairs, pick the the fourth one
from the left.”

• “From the stack of books, take the third one
from the top.”

(g) Functionality

Describes the intended role or purpose
of an object in the scene. Functionality
helps distinguish between objects with
similar appearances but different purposes.

• “It is the door to get into the bathroom.”
• “The door for people.”
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Table B. An example of the instruction used for prompting the VLMs to identify the target object with a rendered image.

You are a helpful assistant designed to identify objects based on images and descriptions.
As shown in the image, this is a rendered image of a room, and the picture reflects your current view.
You should distinguish the target object ID based on your current view. Each object is labeled by a unique number
(ID) in red color on its surface.

Object IDs and their spatial information are as follows:
Object ID: 1, Type: cabinet, Dimensions: Width 0.19, Length 3.21, Height 0.84, Center Coordinates:
X 1.42, Y 1.01, Z 0.41,
. . .

The 3D spatial coordinate system is defined as follows:
The X-axis and Y-axis represent horizontal dimensions, with the Y-axis perpendicular to the X-axis. The Z-axis
represents the vertical dimension, with positive values pointing upwards.

Please review the provided image and object descriptions, then select the object ID that best matches the
given description. Provide a detailed explanation of the features or context that led to your decision.

Respond in the format: “Predicted ID: <ID> Explanation: <explanation>”, where <ID> is
the object ID and <explanation> is your reasoning.

The given description is: “This is the large conference table with many chairs”.

Table C. An example of the instruction used for prompting the VLMs to identify the target and anchor objects based on the query.

You are an assistant designed to identify relationships between objects in a scene.
Your task is to determine both the target and anchor objects based on the query description provided.

Here are some examples:
• “Find the chair that is next to the wooden table.”
Target: chair, Anchor: wooden table

• “Identify the lamp that is on top of the desk.”
Target: lamp, Anchor: desk

• “Locate the book that is under the coffee table.”
Target: book, Anchor: coffee table

. . .

Now, based on the query below, provide the names of the target object and the anchor object.
Response in the format: “Target: <target object>, Anchor: <anchor object>”.

Query: “Find the bowl that is on the dining table.”.

In the main paper, we also discuss the process of deter-
mining anchor and target objects based on the query de-
scription. To further clarify this process, we provide an
illustrative example of the prompt in Tab. C. This prompt
guides the VLM to identify both the target object and its

associated anchor object by analyzing their spatial and se-
mantic relationships as described in the query. This design
ensures the model focuses on identifying key objects while
maintaining alignment with the query’s context.
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A.3. Look-At-View Transform
In the Perspective Adaptation Module, we utilize the
look at view transform function to compute the extrinsic
parameters of the virtual camera.

Specifically, the camera’s rotation matrix Rc and trans-
lation vector Tc are determined based on the camera’s po-
sition e = (xc, yc, zc), the anchor point at = (xa, ya, za),
and the up vector up. Below, we provide a formal descrip-
tion of the computation process.
• Camera Rotation Matrix Rc. The camera rotation ma-

trix Rc ∈ R3×3 aligns the camera’s local coordinate sys-
tem with the world coordinate system. It is derived from
the following steps:
– The forward direction (zaxis) is the normalized vector

from the camera to the anchor:

zaxis =
at− e

∥at− e∥
, (1)

where at− e = (xa − xc, ya − yc, za − zc).
– The right direction (xaxis) is obtained as the normalized

cross product of the up vector up and zaxis:

xaxis =
up× zaxis

∥up× zaxis∥
. (2)

– The up direction (yaxis) is calculated as the cross prod-
uct of zaxis and xaxis:

yaxis = zaxis × xaxis. (3)

– Finally, Rc is constructed by stacking these three vec-
tors:

Rc =
[
xaxis yaxis zaxis

]⊤
. (4)

• Camera Translation Vector Tc. The translation vector
Tc ∈ R3 corresponds to the position of the camera in the
world coordinate system:

Tc = e = (xc, yc, zc). (5)

The look at view transform function provides a sys-
tematic way to compute the extrinsic parameters of a cam-
era in 3D space. The rotation matrix Rc transforms world
coordinates into the camera’s view, while the translation
vector Tc represents the camera’s position. These param-
eters are essential for rendering and aligning 3D scenes to
match the desired perspective.

• Query-Aligned Image Rendering. Once Rc and Tc are
computed, the 3D scene S is projected into a 2D image
plane to render the query-aligned image I:

I = Render(S,Rc,Tc). (6)

This ensures that the rendered image captures the spatial
relationships and visual context described in the query.

A.4. Details of Depth-Aware Visual Prompting
In our method, depth-aware visual prompting plays a key
role in aligning 3D spatial information with 2D visual rep-
resentations while addressing challenges like occlusion dur-
ing projection. This section elaborates on the technical de-
tails and additional considerations involved in this process,
which extends the explanation in the main text.
• Generating Visual Prompts. To create visual prompts,

we first retrieve the 3D bounding boxes and associated
point sets for candidate objects from the OLT. These 3D
points are then projected onto the 2D image plane us-
ing the camera parameters Rc (rotation matrix) and Tc

(translation vector) obtained during the rendering pro-
cess. Specifically, for a given 3D point p = (x, y, z),
the 2D projection p′ = (x′, y′) is computed as:

p′ = Rcp+Tc. (7)

Once projected, visual markers are initially placed at the
center of the projected points for each object. This pro-
vides a basic alignment of the object’s location within the
rendered image.

• Addressing Occlusion Using Depth Information. How-
ever, projecting 3D points onto a 2D plane often intro-
duces occlusions, where some parts of an object may
overlap with other objects or the background. Directly
placing visual prompts without accounting for occlusions
can lead to ambiguity and misalignment between the vi-
sual markers and the object they represent. To address
this, depth information is utilized to determine the visibil-
ity of each point. For every pixel p′ on the 2D image, the
scene’s depth map D(p′) stores the smallest depth value
among all points projected to that pixel. Formally, the
depth map is defined as:

D(p′) = min
ps∈S

ds, (8)

where S is the set of all 3D points in the scene, and ds is
the depth of point ps relative to the camera. To check the
visibility of a 3D point p, its depth dp is compared with
D(p′) at its projected location p′. A point is considered
visible if:

Visible(p) =

{
1, if dp < D(p′) ,

0, otherwise .
(9)

• Object-Level Visibility and Prompt Placement. To de-
termine whether an object should be visually prompted,
the visibility of its constituent points is aggregated. An
object o is considered visible if a sufficient fraction of its
points passes the visibility check:

Visible(o) =

{
1, if

∑
po∈Po

Visible(po) ≥ α · |Po|,
0, otherwise,

(10)

4



Table D. Performance comparison of different VLMs on Nr3D [1].

Agents Easy Hard Dep. Indep. Overall

InternVL2-8B 43.6 25.8 32.6 35.4 34.3
InternVL2-26B 46.8 29.8 34.7 39.8 38.0
Qwen2-VL-7B 40.8 26.3 31.4 34.3 33.3
Qwen2-VL-72B 54.5 38.3 42.3 48.2 46.1

where Po is the set of 3D points corresponding to object
o, |Po| is the total number of points for the object, and α
is a threshold factor determining the minimum fraction of
visible points required.
By filtering out occluded points and using only visible
points to place visual markers, the depth-aware prompting
process ensures accurate alignment of 2D visual prompts
with the true 3D spatial context of objects. This mini-
mizes errors caused by overlapping objects and improves
the model’s understanding of scene geometry.

B. Additional Quantitative Results
In this section, to pursue a more comprehensive compari-
son, we provide additional quantitative results of the pro-
posed SeeGround framework.

B.1. Agents of Different Sizes
Tab. D showcases the performance of different open-source
VLMs on the Nr3D [1] validation set, evaluated across
various difficulty levels and dependency types. The re-
sults highlight the compatibility of our pipeline with mul-
tiple VLM architectures, including InternVL [3, 4, 10] and
Qwen2-VL [8], across different model sizes.

Notably, the proposed pipeline is not restricted to the
specific VLMs shown in the table. It is inherently designed
to be adaptable to any VLM with Optical Character Recog-
nition (OCR) capabilities. Within our framework, OCR
functionality plays a crucial role in identifying object IDs in
rendered images and associating them with textual descrip-
tions. This process enables precise alignment between 2D
visual features and 3D spatial information. Consequently,
the pipeline is well-suited for integration with a wide range
of existing and future VLMs, further extending its applica-
bility to 3D visual grounding tasks.

B.2. Analysis of Visual Prompt Types
To further explore the role of visual prompts in 3D visual
grounding, we provide an analysis of alternative designs, in-
cluding Mask, Contour, and BBOX, as illustrated in Fig. A
and Tab. E. These visual prompts each present unique ad-
vantages and limitations, particularly when combined with
3D spatial information, as used in our method. We con-
ducted experiments using a subset (randomly selected 40
scenes from the 130 scenes) of the Nr3D validation set.
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Figure A. Illustrative examples of different visual prompts in our
designs. The Marker size is enlarged for clarity.

Table E. Performance comparison of different visual prompts:
Marker, Mask, Contour, and BBOX. Results are from 40 randomly
selected scenes out of 130 rooms in the Nr3D [1] validation set.

Type Easy Hard Dep. Indep. Overall

BBOX 53.3 37.4 41.1 47.3 45.1
Mask 53.9 35.1 39.6 47.4 45.0

Contour 56.2 37.7 43.1 49.4 47.5
Marker 54.8 39.7 40.2 51.0 47.7

• Mask. It intuitively highlights the entire object surface,
making the target region explicitly visible. However, even
with high transparency (as shown in Fig. A (b)), Mask can
obscure surface details like texture and fine-grained pat-
terns, which are critical for distinguishing objects. Ad-
ditionally, the extra appearance information provided by
Mask may be unnecessary when 3D spatial information is
already available, potentially distracting the model’s at-
tention. Moreover, generating and rendering masks for
all surface points increases computational overhead, es-
pecially in complex scenes.

• BBOX. It clearly defines spatial boundaries but intro-
duces visual complexity due to the overlay of bounding
box lines. These lines often obscure surface features (col-
or/texture), interfering with the model’s ability to inter-
pret appearance details. In dense or overlapping object
scenarios, bounding boxes can create additional confu-
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Table F. Performance comparison of different 3D detectors on the
ScanRefer [2] validation set. Accuracy (Acc.) is reported for each
method paired with different 3D detectors.

Method 3D Detector Acc.

ZSVG3D [12] Mask3D [7] 36.4
OVIR-3D 19.3

SeeGround
Ground Truth 59.5
Mask3D [6] 44.1

OVIR-3D [5] 30.7

sion. Furthermore, the spatial information conveyed by
BBOX prompts is redundant when 3D spatial positions
are already provided, diminishing model performance.

• Contour. It represents a balance between simplicity and
informativeness. By outlining object boundaries, they
provide clear spatial context while avoiding the occlusion
issues of Mask and BBOX. Contours also retain surface
visibility, preserving critical appearance cues. The exper-
imental results indicate that Contours perform similarly
to Markers because both approaches minimize visual dis-
tractions while preserving spatial and appearance cues.

• Marker. It offers the most minimal and focused de-
sign, marking object centers without introducing visual
clutter or occluding appearance features. This approach
maximally preserves object details like texture and color
while providing essential spatial information. The direct
mapping of markers to 3D spatial positions aligns seam-
lessly with the 3D spatial information already used in our
method, enhancing localization precision.

While Mask, Contour, and BBOX prompts each have spe-
cific strengths, their limitations – such as visual interfer-
ence or redundancy – make Marker the most suitable choice
for our framework. Its simplicity and compatibility with
3D spatial inputs ensure efficient and accurate 3D visual
grounding in complex scenarios.

B.3. Results on Different Detectors.
Tab. F presents a performance comparison of different 3D
detectors on the ScanRefer validation set, highlighting the
impact of detector choice on grounding accuracy. With the
same 3D detector (Mask3D), our method significantly out-
performs the previous state-of-the-art approach, ZSVG3D,
achieving an accuracy of 44.1 compared to 36.4. We also
explore OVIR-3D as an alternative detector. The results
show that our method achieves an accuracy of 30.7 with
OVIR-3D, while ZSVG3D achieves 19.3 under the same
setting. Additionally, the table reveals the upper-bound per-
formance of our method when using ground truth (GT) pro-
posals, reaching an accuracy of 59.5. This underscores the
importance of improving 3D object detection accuracy, as
better detection directly translates to enhanced grounding
results.

B.4. Real-world Image vs. Rendered Image

SeeGround begins with 3D object detection, which is per-
formed directly on the 3D point cloud. Point clouds, while
sparse and noisy, inherently capture geometric details like
size, shape, and spatial location. This makes the 3D detec-
tion stage less susceptible to the visual artifacts that typ-
ically affect rendered images (e.g., inconsistent lighting,
color shifts). Following this, the detected objects are used to
generate rendered images from selected viewpoints. These
rendered images serve as visual inputs for VLMs, combined
with explicit textual descriptions and spatial information.
This workflow naturally raises questions about the impact
of rendering quality on the method’s performance, partic-
ularly in comparison to methods discussed in works like
EmbodiedScan [9] (Table 7), which highlight a domain gap
between rendered images and real-world images.

However, unlike methods that rely purely on rendered
images for learning and inference (e.g., rendering RGB
images and directly training models on them), SeeGround
treats rendered images as part of a multimodal input. The
rendered images provide a visual representation of the scene
but are supplemented by 3D spatial data, which is indepen-
dent of rendering quality. This additional spatial informa-
tion reduces reliance on rendering fidelity.

C. More Visualization Results

Fig. B provides additional visual examples to supplement
the analysis in the main text, further illustrating the advan-
tages of our method over previous approaches. By compar-
ing predictions made by previous methods and Ours across
various query-based 3D visual grounding tasks, we high-
light the importance of appearance information (e.g., tex-
ture, color, and shape) in resolving ambiguities and improv-
ing localization accuracy.

As shown in these examples, previous methods of-
ten fail to utilize appearance information effectively, lead-
ing to incorrect predictions when objects share similar
spatial configurations or belong to the same category.
For instance, queries like “the trash can next to
the blackboard” or “the monitor in front
of the black keyboard” require fine-grained dif-
ferentiation based on appearance attributes. Previous meth-
ods tend to misidentify nearby or visually similar objects
due to their limited ability to integrate these attributes into
the grounding process. In contrast, our method incorporates
appearance information explicitly through depth-aware vi-
sual prompting, enabling more accurate alignment of tex-
tual descriptions with 3D spatial and visual cues.

These supplementary results emphasize the critical role
of appearance information in 3D visual grounding and
demonstrate how our method effectively leverages this in-
formation to address ambiguities. By incorporating visual
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features alongside spatial reasoning, our approach achieves
significant improvements in challenging scenarios, further
validating the findings presented in the main text.

D. Broader Impact & Limitations

In this section, we elaborate on the broader impact and po-
tential limitations of this work.

D.1. Broader Impact

Our approach bridges 3D data and 2D VLMs, making 3D
visual grounding accessible in zero-shot settings. This de-
sign reduces reliance on large-scale 3D-specific datasets
and annotations, enabling scalable deployment. By focus-
ing on integrating 2D rendered images with spatial descrip-
tions, our method highlights the importance of appearance
features like color, texture, and orientation, which are of-
ten overlooked in previous zero-shot approaches. Appli-
cations range from assistive technologies to robotics and
augmented reality, where robust object localization can en-
hance usability and accessibility. Moreover, the use of vi-
sual prompts, especially the Marker-based design, intro-
duces an interpretable mechanism for aligning visual and
spatial information. This improves transparency and trust
in AI systems, allowing stakeholders to better understand
the reasoning behind model predictions.

D.2. Potential Limitations

Despite its advancements, our method has some limitations.
It relies on accurate 3D object detection and spatial data,
making it vulnerable to errors in preprocessing. Misaligned
bounding boxes or missing objects can propagate through
the pipeline, reducing localization accuracy. Marker-based
visual prompts, while simple and effective, may struggle in
cluttered scenes requiring richer contextual information and
can obscure very small objects, complicating precise local-
ization. The method leverages 2D-3D alignment without
requiring highly accurate rendered images, but consistent
alignment remains crucial for effective multimodal fusion.
Significant deviations in rendered images – caused by inac-
curate camera parameters or low-quality point clouds – can
compromise alignment between 2D prompts and 3D spatial
descriptions. This issue is exacerbated in cluttered/dynamic
scenes, where rendering delays can lead to mismatches be-
tween 2D prompts and real-time 3D data, causing errors in
grounding. For instance, in scenes with moving objects,
outdated rendered views may misrepresent object positions,
leading to incorrect target identification. Future work could
enhance multimodal alignment robustness under noisy or
sparse data, improve real-time efficiency, and better han-
dle dynamic and cluttered environments, broadening the
method’s applicability to complex real-world scenarios.

E. Public Resource Used
In this section, we acknowledge the use of the following
public resources, during the course of this work:
• Pytorch 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pytorch License
• Pytorch3D 2 . . . . . . . . . . . . . . . . . . . . . . BSD-Style License
• Open3D 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT license
• ScanRefer4 . . . . . . . . . . . . . . . . . . . . . . . ScanRefer License
• Nr3D 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• Qwen2-VL6 . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• InternVL2 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT license
• ZSVG3D 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• vLLM 9 . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• OpenScene 10 . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• vil3dref 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Unknown
• OpenIns3D 12 . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• EmboddiedScan 13 . . . . . . . . . . . . . . . . Apache License 2.0
• LAR 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License

References
[1] Panos Achlioptas, Ahmed Abdelreheem, Fei Xia, Mohamed

Elhoseiny, and Leonidas Guibas. Referit3d: Neural listeners
for fine-grained 3d object identification in real-world scenes.
In European Conference on Computer Vision, pages 422–
440. Springer, 2020. 5

[2] Dave Zhenyu Chen, Angel X Chang, and Matthias Nießner.
Scanrefer: 3d object localization in rgb-d scans using natural
language. In European conference on computer vision, pages
202–221. Springer, 2020. 6

[3] Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen,
Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu,
Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng
Dai. Internvl: Scaling up vision foundation models and
aligning for generic visual-linguistic tasks. arXiv preprint
arXiv:2312.14238, 2023. 5

[4] Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhang-
wei Gao, Erfei Cui, Wenwen Tong, Kongzhi Hu, Jiapeng
Luo, Zheng Ma, et al. How far are we to gpt-4v? closing
the gap to commercial multimodal models with open-source
suites. arXiv preprint arXiv:2404.16821, 2024. 5

[5] Shiyang Lu, Haonan Chang, Eric Pu Jing, Abdeslam Boular-
ias, and Kostas Bekris. Ovir-3d: Open-vocabulary 3d in-

1https://github.com/pytorch/pytorch
2https://github.com/facebookresearch/pytorch3d
3https://github.com/isl-org/Open3D
4https://daveredrum.github.io/ScanRefer/
5https://github.com/referit3d/referit3d
6https://github.com/QwenLM/Qwen2-VL
7https://huggingface.co/OpenGVLab/InternVL2-26B
8https://github.com/CurryYuan/ZSVG3D
9https://github.com/vllm-project/vllm

10https://github.com/pengsongyou/openscene
11https://github.com/cshizhe/vil3dref
12https://github.com/Pointcept/OpenIns3D
13https://github.com/OpenRobotLab/EmbodiedScan
14https://github.com/eslambakr/LAR-Look-Around-

and-Refer

7

https://github.com/pytorch/pytorch
https://github.com/facebookresearch/pytorch3d
https://github.com/isl-org/Open3D
https://daveredrum.github.io/ScanRefer/
https://github.com/referit3d/referit3d
https://github.com/QwenLM/Qwen2-VL
https://huggingface.co/OpenGVLab/InternVL2-26B
https://github.com/CurryYuan/ZSVG3D
https://github.com/vllm-project/vllm
https://github.com/pengsongyou/openscene
https://github.com/cshizhe/vil3dref
https://github.com/Pointcept/OpenIns3D
https://github.com/OpenRobotLab/EmbodiedScan
https://github.com/eslambakr/LAR-Look-Around-and-Refer
https://github.com/eslambakr/LAR-Look-Around-and-Refer


stance retrieval without training on 3d data. In Conference
on Robot Learning, pages 1610–1620. PMLR, 2023. 6

[6] Jonas Schult, Francis Engelmann, Alexander Hermans, Or
Litany, Siyu Tang, and Bastian Leibe. Mask3d: Mask trans-
former for 3d semantic instance segmentation. In 2023
IEEE International Conference on Robotics and Automation,
pages 8216–8223. IEEE, 2023. 6

[7] Ayça Takmaz, Elisabetta Fedele, Robert W. Sumner, Marc
Pollefeys, Federico Tombari, and Francis Engelmann. Open-
mask3d: Open-vocabulary 3d instance segmentation. arXiv
preprint arXiv:2306.13631, 2023. 6

[8] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan,
Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin
Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui
Men, Dayiheng Liu, Chang Zhou, Jingren Zhou, and Jun-
yang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint
arXiv:2409.12191, 2024. 5

[9] Tai Wang, Xiaohan Mao, Chenming Zhu, Runsen Xu,
Ruiyuan Lyu, Peisen Li, Xiao Chen, Wenwei Zhang, Kai
Chen, Tianfan Xue, et al. Embodiedscan: A holistic multi-
modal 3d perception suite towards embodied ai. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 19757–19767, 2024. 6

[10] Weiyun Wang, Zhe Chen, Wenhai Wang, Yue Cao,
Yangzhou Liu, Zhangwei Gao, Jinguo Zhu, Xizhou Zhu,
Lewei Lu, Yu Qiao, and Jifeng Dai. Enhancing the reason-
ing ability of multimodal large language models via mixed
preference optimization. arXiv preprint arXiv:2411.10442,
2024. 5

[11] Jianing Yang, Xuweiyi Chen, Shengyi Qian, Nikhil Madaan,
Madhavan Iyengar, David F Fouhey, and Joyce Chai. Llm-
grounder: Open-vocabulary 3d visual grounding with large
language model as an agent. In IEEE International Confer-
ence on Robotics and Automation, pages 7694–7701. IEEE,
2024. 1

[12] Zhihao Yuan, Jinke Ren, Chun-Mei Feng, Hengshuang
Zhao, Shuguang Cui, and Zhen Li. Visual programming for
zero-shot open-vocabulary 3d visual grounding. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 20623–20633, 2024. 1, 6

8



(b) The longer whiteboard on the wall furthest away from the doorway.

(a) Black office chair that is pushed all the way up to the desk.  It is facing a large computer screen and 
there is a white notepad and keyboard on the desk in front of it.

(c) White keyboard on the desk.

(d) On the desk with just two monitors, it's the monitor with the black keyboard in front of it.

(e) The couch under the whiteboard.

ZSVG3D Ours Ground Truth
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(f) When standing in the doorway, it is the trash can on the right side, nearest to the white board.

(g) The blue office chair in the middle of the room, behind another chair.

(h) First bookshelf to the left of the door.

(i) A black object sits on this table.

ZSVG3D Ours Ground 
Truth

(j) This couch is by the table with 3 magazines on top.

Figure B. Illustration of SeeGround’s capability to resolve ambiguities in 3D visual grounding task. Incorrectly identified objects (Orange)
and correctly identified objects (Green) are indicated to differentiate prediction accuracy, key cues are underlined.
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