
Seeking Consistent Flat Minima for Better Domain Generalization
via Refining Loss Landscapes

Supplementary Material

Let us start with a brief overview of this supplementary
material. In Section 1, we perform a theoretical analysis
of the loss landscape consistency under the PAC-Bayesian
framework. The analysis shows that the sharpness of the
test loss can be constrained by that of the training domains,
which also implies the generalization of consistent flat min-
ima sought by the self-feedback training (SFT). In Section
2, we discuss the proposed projection cross-entropy loss
and the algorithm used to solve the associated KL diver-
gence minimization problem. We provide a comprehensive
derivation of the algorithm, along with a time comparison
against an implementation using the common convex opti-
mization library. Subsequently, we present the full results
obtained using Resnet-50, ViT-B/16, and ViT-L/14 in the
following two sections (Section 3 and 4). Additionally, we
offer necessary explanations of the code (in Section 5.1) and
hyperparameters (in Section 5.2) required for reproducibil-
ity. Finally, in Section 6, we assure that this research is
unlikely to have any significant negative social impact.

1. Theoretical Analysis
In this section, we will perform a theoretical analysis of the
loss landscape consistency under the PAC-Bayesian frame-
work. For clarity and ease of understanding, we first pro-
vide a detailed explanation of the relevant notations and
concepts that will be used throughout the analysis.

1.1. Notations
Let X and Y denote the input sample space and the cate-
gory space, respectively. Consider a dataset drawn from p
training distributions {Dd}pd=1, each defined over the joint
space X×Y . LetDd = {(x(d)

i , y
(d)
i )}nd

i=1 denote the dataset
sampled from the d-th distribution Dd, which is referred to
as the d-th domain. (x(d)

i , y
(d)
i ) ∈ X × Y denotes the i-th

sample from domain Dd, with nd indicating the number of
samples in the d-th domain. For convenience, we also use
zi to denote (xi, yi). Let Ω and Ω′ denote the dataset space
and distribution space, respectively. In our analysis, domain
shifts are modeled by a mapping function ω : Ω → Ω′,
which maps one dataset to another distribution with distinct
statistical properties. We assume that the domain shifts ω
follow a specific distribution W .

Our SFT framework mainly involves a model and a land-
scape refiner. Let Hm and Hr denote the hypothesis spaces
of the model and the refiner, respectively. To analyze the
SFT within the PAC-Bayesian framework, we need to pro-
vide a description using Bayesian terms. Let Mm, Mr

denote the sets of distributions over Hm and Hr. In or-
der to obtain a model from its prior distribution, we first
sample a prior distribution P for the refiner from the hyper-
prior distribution P , which is independent of training sam-
ples. Then, we use a mapping function ψ : Mr → Mm

to obtain the model’s prior distribution ψ(P ) ∈ Mm and
sample a model f from ψ(P ). In order to obtain a model
from its posterior distribution, we sample a posterior dis-
tribution P for the refiner from a hyper-posterior distri-
bution Q, which may depend on training samples. Then,
we apply the training algorithm to the dataset Dd ∈ Ω to
obtain the model’s posterior distribution A(Dd, P ), where
A : Ω × Mr → Mm represents the function that maps
one dataset along with the refiner’s posterior distribution to
the model’s posterior distribution. Finally, we can sample a
model f from this posterior distribution.

1.2. Main Theorem
In this subsection, we first introduce a lemma that will
be used multiple times in our analysis, and then formally
present the main result, which is stated as Theorem 2.

Lemma 1 (McAllester’s bound [1]). Let X be a sample
space and H a hypothesis space of functions over X . Given
π be some prior distribution over hypothesis space H, for
bounded loss ℓ : H×X → [0, 1] and any δ ∈ (0, 1], the fol-
lowing bound holds uniformly for all posterior distributions
ρ with probability at least 1− δ:

E
θ∼ρ

ℓ(θ,D) ≤ E
θ∼ρ

ℓ(θ, Sn) +

√
KL(ρ||π) + log (n/δ)

2(n− 1)
,

(1)

where
ℓ(θ,D) = Ez∼Dℓ(θ, z)

and

ℓ(θ, Sn) =
1

n

n∑
i=1

ℓ(θ, zi)

denotes the population loss and training loss, respectively.
Sn represents a dataset with n training samples drawn in-
dependently and identically from distribution D.

Theorem 2. Consider the domain generalization problem
with p training domains. For each training domain Dd,
we are given p− 1 training-domain pairs (Dd,Dd′), where
d′ ̸= d, with each pair consisting of a training dataset Dd

of size nd and a hold-out dataset Dd′ of size nd′ . Let the



dataset space be Ω and the distribution space be Ω′. As-
sume that the domain shifts, denoted by ω : Ω → Ω′, follow
a distribution W . The difference in loss sharpness between
domains Dd and Dd′ is defined as:

∆ℓ(f,Dd,Dd′) := | E
z∼Dd

ℓ(f, z)− E
z∼Dd′

ℓ(f, z)|, (2)

where ℓ(f, z) represent the loss sharpness of the model f
evaluated on data point z. Let P denote a predefined hyper-
prior distribution over the set of all possible prior distribu-
tions for the landscape refiner. Then, for all hyper-posterior
distributions Q that ensure a sufficiently small sharpness
difference between training domains, i.e.,

∀d′ ̸= d : E
P∼Q

E
f∼A(Dd,P )

∆ℓ(f,Dd,Dd′) ≤ ϵ, (3)

and for any δ ∈ (0, 1], the following inequality holds with
probability at least 1− δ:

ℓ(Q, ω) ≤ ϵ+ ℓ̂(Q, Dd) +
1

p− 1
×

∑
d′ ̸=d

√√√√KL(Q∥P) + E
P∼Q

KL (A∥ψ(P )) + log 2(p−1)nd

δ

2(nd − 1)

+

√
KL(Q∥P) + log 2(p−1)

δ

2(p− 2)
. (4)

Here, ψ(P ) is the prior model distribution, and A is a
shorthand of the posterior model distribution A(Dd, P ).
KL(·∥·) denotes the Kullback-Leibler divergence. The term
ℓ(Q, ω) is defined as:

ℓ(Q, ω) := E
P∼Q

E
ω∼W

E
f∼A(Dd,P )

E
z∼ω(Dd)

ℓ(f, z), (5)

which represents the expected sharpness of the model eval-
uated on the test distribution ω(Dd). The term ℓ̂(Q, Dd) is
defined as:

ℓ̂(Q, Dd) := E
P∼Q

E
f∼A(Dd,P )

1

nd

nd∑
i=1

ℓ (f, zi) , (6)

which represents the empirical sharpness of the model over
the training domain Dd.

Proof. Firstly, we bound the loss sharpness in each of the
domain pairs. Based on the above definitions in the sub-
section 1.1, we can decompose the KL divergence term of
Lemma 1 in the following way:

KL(ρ∥π)

= E
f∼ρ

log
ρ(f)

π(f)
= E

P∼Q
E

f∼A(Dd,P )
log

Q(P )A (Dd, P ) (f)

P(P )ψ(P )(f)

= E
P∼Q

log
Q(P )

P(P )
+ E

P∼Q
E

f∼A(Dd,P )
log

A (Dd, P ) (f)

ψ(P )(f)

= KL(Q∥P) + E
P∼Q

KL (A (Dd, P ) ∥ψ(P )) . (7)

This decomposition separates the KL divergence into two
components: KL(Q∥P) and E

P∼Q
KL (A (Dd, P ) ∥ψ(P )).

Now, based on this, we can establish a probabilistic upper
bound on the loss sharpness. Thus, with probability at least
1− δd′ , we have:

E
P∼Q

E
f∼A(Dd,P )

E
z∼Dd′

ℓ(f, z)

≤ E
P∼Q

E
f∼A(Dd,P )

1

nd

nd∑
i=1

ℓ (h, zi)

+ E
P∼Q

E
f∼A(Dd,P )

∆ℓ(h,Dd,Dd′)

+

√√√√KL(Q∥P) + E
P∼Q

KL (A∥ψ(P )) + log nd

δd′

2 (nd − 1)
. (8)

This bound captures the generalization ability between
training domains, i.e., from domain Dd to domain Dd′ .

Next, assuming that the domain shifts ω : Ω → Ω′ are
governed by a distribution W , we can apply Lemma 1 again
to bound the loss sharpness on the test domain ω(Dd). This
step is critical because it extends the generalization to the
test domains. Specifically, with probability at least 1 − δ′,
we obtain the following bound:

E
P∼Q

E
ω∼W

E
f∼A(Dd,P )

E
z∼ω(Dd)

ℓ(f, z)

≤ E
P∼Q

1

p− 1

∑
d′ ̸=d

E
f∼A(Dd,P )

E
z∼Dd′

ℓ(f, z)

+

√
KL(Q∥P) + log p−1

δ′

2(p− 2)
. (9)

Here, the first term represents an average over all domain
pairs, while the second term corresponds to the KL di-
vergence between hyper-prior and hyper-posterior distribu-
tions. The confidence parameter δ′ controls the probability
of the bound holding.

Finally, we set δ′ = δ/2 and δd′ = δ/[2(p−1)] and apply
the union bound to combine the above results. This leads to
the final bound, which holds with probability at least 1− δ,

E
P∼Q

E
ω∼W

E
f∼A(Dd,P )

E
z∼ω(Dd)

ℓ(h, z)

≤ 1

p− 1

∑
d′ ̸=d

[
E

P∼Q
E

f∼A(Dd,P )

1

nd

nd∑
i=1

ℓ (f, zi)

+ E
P∼Q

E
f∼A(Dd,P )

∆ℓ(f,Dd,Dd′) +√√√√KL(Q∥P) + E
P∼Q

KL (A∥ψ(P )) + log 2(p−1)nd

δ

2(nd − 1)


+

√
KL(Q∥P) + log 2(p−1)

δ

2(p− 2)
. (10)



The inequality above provides a comprehensive bound of
the loss sharpness on the test domains, completing the proof
of Theorem 2.

In conclusion, this theorem shows that if domain shifts
are governed by a specific distribution and the domain shifts
in the training domains are independently and identically
sampled from this distribution, then the sharpness of the test
loss is bounded by the sharpness observed in the training
domains with high probability. In other words, the consis-
tency of the flat minima achieved in the training domains
can be transferred to unseen test domains. As a result, the
model can exhibit strong generalization performance when
applied to test domains.

2. Projection Cross Entropy
As mentioned in the main text, the projection cross entropy
(PCE) can be used as a loss term to maintain the label cor-
rectness during the refinement phase. An efficient algorithm
(Alogrithm 1) has been presented to address the associated
KL divergence minimization problem there.

In this section, we first provide the derivation of this al-
gorithm, followed by a comparison of its time efficiency
with that of widely-used convex optimization libraries. Fi-
nally, we further discuss the connections between the PCE
loss and other related loss functions.

2.1. KL Divergence Minimization
As stated in the main text, the optimization is formulated as:

min
y

KL(y || ỹ) subject to y ∈ C1, (11)

where ỹ represents the soft label output by the landscape
refiner, and the label space C1 can be expressed as:

C1 = {(q1, . . . , qN ) | ∀k ̸= 1 : q1 ≥ αqk,

N∑
k=1

qk = 1}.

(12)
Here, α ≥ 1 is a hyperparameter that controls the minimum
ratio between q1 and qk, while N denotes the number of
categories for classification. For ease of understanding, we
restate the problem more explicitly as follows:

min
qi

N∑
i=1

qi log
qi
pi

s. t.
N∑
i=1

qi = 1, q1 ≥ αqk (k ̸= 1), (13)

where we use (p1, . . . , pN ) to represent ỹ for clarity.
In the following, we will offer a detailed derivation of Al-

gorithm 1, which is capable of finding the exact optimal so-
lution to this optimization problem. The general idea of the

Algorithm 1: KL Divergence Minimization
Input: The hyperparameter α, (p1, . . . , pN ).
Output: The optimal solution (q1, . . . , qN ).

1 Initialization: A← ∅, B ← {j|αpj > p1}, t← 1.
2 Sort the elements of B in descending order:

pj1 ≥ · · · ≥ pj|B| .
3 Update: A← A ∪ {j1}, t← t+ 1.
4 while t ≤ |B| do

5 if
(
pα1

(∏
j∈A αpj

)) 1
|A|+α

< αpjt then
6 Update: A← A ∪ {jt}, t← t+ 1.
7 else
8 Break
9 end

10 end

11 Calculate q1: q1 =
(
pα1

(∏
j∈A αpj

)) 1
|A|+α .

12 for i ∈ {2, . . . , N} do
13 if i ∈ A then
14 qi = q1/α.
15 else
16 qi = pi.
17 end
18 end
19 Normalize q1, . . . , qN such that

∑
i qi = 1.

derivation is as follows: first, by examining the Lagrangian
function and the Karush-Kuhn-Tucker (KKT) conditions of
the problem, we obtain the general form of the optimal so-
lution. Then, we determine which constraints among the
inequality constraints hold as a strict equality (i.e., active),
and finally, we find the optimal solution based on these ac-
tive constraints.

2.1.1. Lagrangian Function and KKT Conditions
To solve the given optimization problem, we first con-
struct the Lagrangian function by incorporating the objec-
tive function and the constraints using Lagrange multipliers:

L(qi, µk, λ) =

N∑
i=1

qi log
qi
pi

+

N∑
k=2

µk(αqk − q1)

+ λ(

N∑
i=1

qi − 1), (14)

where µk ≥ 0 represents the Lagrange multiplier for the
inequality constraint q1 ≥ αqk, and λ denotes the Lagrange
multiplier for the equality constraint

∑N
i=1 qi = 1. Then,

the Karush-Kuhn-Tucker (KKT) conditions are the neces-
sary conditions for optimality in constrained optimization
problems. We apply these conditions to the Lagrangian
function and derive the following set of equations:
1. Stationarity. The stationarity conditions require that the

partial derivatives of the Lagrangian with respect to each
of the variables be zero, which corresponds to the opti-



mality condition. For q1, we have the following equa-
tion:

∂L

∂q1
= 1 + log q1 − log p1 −

N∑
k=2

µk + λ = 0. (15)

Similarly, for qj , where j = 2, . . . , n, we get:

∂L

∂qj
= 1 + log qj − log pj + µjα+ λ = 0. (16)

These two equations can be solved to express q1 and qj
in terms of the Lagrange multipliers µk and λ. Thus, we
have the following solutions:

q1 = p1 exp

(
N∑

k=2

µk − 1− λ

)
(17)

and
qj = pj exp (−µjα− 1− λ). (18)

2. Primal feasibility. The primal feasibility condition en-
sures that the original constraints are satisfied. There-
fore, we have:

αqj − q1 ≤ 0. (19)

3. Dual feasibility. The dual feasibility condition imposes
non-negativity on the Lagrange multipliers associated
with the inequality constraints:

µj ≥ 0. (20)

4. Complementary slackness. Finally, the complementary
slackness condition relates the primal and dual variables.
In this case, the complementary slackness condition for
the inequality constraint is:

µj(αqj − q1) = 0. (21)

This condition implies that either µj = 0 or αqj = q1 (or
both). It ensures that if the constraint is inactive (i.e., it
holds as a strict inequality), the corresponding multiplier
is zero, and if the multiplier is positive, the correspond-
ing constraint is active (i.e., it holds as a strict equality).

In the following, we can obtain the general form of the
optimal solution by examining the two cases of µ > 0 and
µ = 0 as per the KKT conditions.
• Case 1: µj > 0.

If µj > 0, from the stationarity condition and comple-
mentary slackness, we can derive the following equation:

αqj = αpj exp (−µjα− 1− λ)

=q1 = p1 exp

(
N∑

k=2

µk − 1− λ

)
. (22)

Through a simple manipulation of the equation, we can
obtain:

p1
αpj

=
exp(−µjα)

exp(
∑N

k=2 µk)
. (23)

Since µj > 0 in this case, the right side of the above
equation is less than 1. In other words, if p1 ≥ αpj ,
then we can determine that µj = 0. On the other hand,
by setting the value of j in equation (22) and multiplying
these expressions together, we can obtain the following
relationship:

α|A| exp(−α
∑
j∈A

µj)
∏
j∈A

pj = p
|A|
1 exp(|A|

∑
k∈A

µk).

(24)
Here,A is defined as the set of indices k such that µk > 0,
i.e., A := {k|µk > 0}. |A| denotes the cardinality of set
A. Then, we can derive:

exp(
∑
k∈A

µk) = (p
−|A|
1 (

∏
j∈A

αpj))
1

|A|+α . (25)

By using the above equation, we can express q1 and qj
without using µj :

q1 = αqj = exp (−1− λ)(pα1 (
∏
j∈A

αpj))
1

|A|+α . (26)

• Case 2: µj = 0.
If µj = 0, qj can be easily expressed without using µj :

qj = pj exp (−1− λ). (27)

Then, by using the equations (22), (26) and (27), we can
also express the objective function without using µj :

N∑
i=1

qi log
qi
pi

= −(1 + λ). (28)

Finally, by applying the normalization condition∑N
i=1 qi = 1, we can solve for the value of λ using the

following equation:

exp(1+λ) = (1+
|A|
α

)(pα1 (
∏
j∈A

αpj))
1

|A|+α +
∑

j ̸∈A∪{1}

pj .

(29)

2.1.2. Determine Active Constraints
To determine the active constraints, we have the following
proposition, which directly leads to the formulation of Al-
gorithm 1.

Proposition 3. Consider the optimization problem in (13).
Let A be the set of indices k such that µk > 0, i.e., A :=
{k|µk > 0}. Define B as the set {pj |αpj > p1}. Sort the
elements of B in descending order as:

pj1 ≥ pj2 ≥ . . . ≥ pj|B| . (30)



Note that duplicate elements in B are not removed. Then,
the following conclusions holds:
1. The index j1, which corresponds to the largest element

in B, must belong to A, i.e., j1 ∈ A.
2. For any C = {j1, . . . , jt−1} ⊆ A, if the inequality

(pα1 (
∏
j∈C

αpj))
1

|C|+α < αpjt (31)

holds, then jt ∈ A. Otherwise, for all s ∈ {t, t +
1, . . . , |B|}, we have js ̸∈ A. That is, A = C.

Proof. Firstly, we can prove that j1 ∈ A. To do so, assume
for the sake of contradiction that j1 /∈ A. By using equa-
tions (26) and (27), we obtain the following expression for
q1:

q1 = exp (−1− λ)(pα1 (
∏
j∈A

αpj))
1

|A|+α

< exp (−1− λ)((αpj1)
α(
∏
j∈A

αpj1))
1

|A|+α

= α exp (−1− λ)pj1 = αqj1 . (32)

Here, the first equality follows from the equation (26), and
the inequality in the second-to-last line is based on the def-
inition of B, in which p1 < αpj1 . The first equality in
the last line is simply an identity transformation, and the
last equation uses the equation (27) under the assumption
that j1 /∈ A. The above analysis shows that q1 < αqj1 ,
which clearly violates the inequality constraints of the orig-
inal problem. Thus, our assumption that j1 /∈ A must be
false.

Secondly, we consider the case where C =
{j1, . . . , jt−1} ⊆ A, and we assume that the inequal-
ity

(pα1 (
∏
j∈C

αpj))
1

|C|+α < αpjt (33)

holds. We now want to prove that jt ∈ A. Suppose, for
contradiction, that jt /∈ A. In this case, we proceed as fol-
lows. Using the equations (26) and (27), we can express q1
as:

q1 = exp (−1− λ)(pα1 (
∏
j∈A

αpj))
1

|A|+α

= exp (−1− λ)(pα1 (
∏
j∈C

αpj)(
∏

j∈A−C

αpj))
1

|A|+α

< exp (−1− λ)(pα1 (
∏
j∈C

αpj)(
∏

j∈A−C

αpjt))
1

|A|+α

< exp (−1− λ)((αpjt)
|C|+α(

∏
j∈A−C

αpjt))
1

|A|+α

= α exp (−1− λ)pjt = αqjt . (34)

The first equality uses equation (26). The first inequality
follows from the fact that pjt > pj for any j ∈ A−C, which
is because the elements ofB have been sorted in descending
order. The second inequality uses the condition stated in
(33). The last equality follows from equation (27) under
the assumption that jt /∈ A. The above analysis shows that
q1 < αqjt , which, again, violates the inequality constraints
of the original problem. Hence, our assumption that jt /∈ A
is false, and it holds that jt ∈ A.

Finally, we address the case where the inequality (33)
does not holds. In this case, for all s ∈ {t, t + 1, . . . , |B|},
we assert that js ̸∈ A. We will now prove this by consider-
ing two cases. In the first case, we assume that there exists
some js ∈ A such that pα1 (

∏
j∈C αpj))

1
|C|+α > αpjs . If

js ∈ A, we then have:

N∑
i=1

qi log
qi
pi

= −(1 + λ)

= − log

(1 + |C|+ 1

α
)((pα1 (

∏
j∈C∪{js}

αpj))
1

|C|+1+α

+
∑

j ̸∈C∪{1,js}

pj

 . (35)

The equations (28) and (29) have been applied above. How-
ever, if js ̸∈ A, we have

N∑
i=1

qi log
qi
pi

= −(1 + λ)

= − log

(1 + |C|
α

)(pα1 (
∏
j∈C

αpj))
1

|C|+α +
∑

j ̸∈C∪{1}

pj

 .
(36)

Now we consider the function of pjs :

f(pjs) = (1 +
|C|
α

)(pα1 (
∏
j∈C

αpj))
1

|C|+α + pjs

− (1 +
|C|+ 1

α
)(pα1 (αpjs)(

∏
j∈C

αpj))
1

|C|+1+α .

(37)

Then, the first derivative of f(pjs) with respect to pjs is
given by:

f ′(pjs) = 1− 1

α
(αpα1 (

∏
j∈C

αpj))
1

|C|+1+α p
1

|C|+1+α
−1

js
. (38)

Obviously, f ′(pjs) increases gradually as pjs in-
creases, and f ′( 1

α (p
α
1 (
∏

j∈C αpj))
1

|C|+α ) = 0. Since



(pα1 (
∏

j∈C αpj))
1

|C|+α > αpjs , we can get

f(pjs) > f(
1

α
(pα1 (

∏
j∈C

αpj))
1

|C|+α ) = 0. (39)

From equation (39), we can observe that the value of the
objective function is smaller if js ̸∈ A. In the second case,
if there exists js such that (pα1 (

∏
j∈C αpj))

1
|C|+α = αpjs

and js ∈ A, we have

qjs =
q1
α

=
1

α
exp (−1− λ)(pα1 (αpjs)(

∏
j∈C

αpj))
1

|C|+1+α

= pjs exp(−1− λ), (40)

which leads to the conclusion that µjs = 0 according to
the equation (18), contradicting the definition of the set
A. Hence, no such js can exist. In conclusion, for all
s ∈ {t, t+ 1, . . . , |B|}, it holds that js ̸∈ A.

At this time, we have successfully identified the active
set A. Subsequently, we can obtain the optimal solution by
applying equations (26), (27), and (29), which leads to the
formulation of Algorithm 1.

2.2. Time Efficiency
Although the proof may be somewhat intricate, it is worth
emphasizing that Algorithm 1 exhibits significantly higher
efficiency in comparison to conventional convex program-
ming tools such as MOSEK. The table below presents the
average time taken by the classical convex programming
tool (MOSEK) and the proposed Algorithm 1 over 1000
runs. It is evident that for N = 100, Algorithm 1 consumes
only around one-tenth of the time required by traditional
convex programming tools.

Table 1. Comparisons about average training time required by Al-
gorithm 1 and the MOSEK tool.

MOSEK Algo. 1 (Ours) Speedup ratio

Time (Avg.) 21.93 ms 2.16 ms 10.15

2.3. Further Discussion
By examining Algorithm 1, we can find that if α is suffi-
ciently large such that |A| = N − 1, the optimal soft labels
degenerate into smoothed labels with a label smoothing fac-
tor of s = N/(α − 1 + N). Furthermore, as α increases
towards infinity, the optimal soft labels converge towards
one-hot labels. Then, the PCE loss degenerate into the tra-
ditional cross entropy.

3. Full Results with ResNet-50

In this section, we demonstrate the full results of our exper-
iments that were carried out on five well-known benchmark
datasets, including VLCS, PACS, OfficeHome, TerraIncog-
nita and DomainNet. These experiments were conducted
using ResNet-50, which was pre-trained on ImageNet.

3.1. VLCS

Table 2. Out-of-domain accuracies (%) on each domain of VLCS
and their average.

Algorithms C L S V Avg.

ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1

SFT (Ours) 99.5 ± 0.1 66.2 ± 0.2 74.8 ± 0.5 78.7 ± 0.4 79.8

3.2. PACS

Table 3. Out-of-domain accuracies (%) on each domain of PACS
and their average.

Algorithms A C P S Avg.

ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2

SFT (Ours) 90.1 ± 0.3 80.3 ± 1.0 98.6 ± 0.2 84.3 ± 1.4 88.3

3.3. OfficeHome

Table 4. Out-of-domain accuracies (%) on each domain of Office-
Home and their average.

Algorithms A C P R Avg.

ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5

SFT (Ours) 65.8 ± 0.3 58.8 ± 0.3 78.3 ± 0.4 80.6 ± 0.2 70.9



3.4. TerraIncognita

Table 5. Out-of-domain accuracies (%) on each domain of Ter-
raIncognita and their average.

Algorithms L100 L38 L43 L46 Avg.

ERM 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
IRM 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6
GroupDRO 41.2 ± 0.7 38.6 ± 2.1 56.7 ± 0.9 36.4 ± 2.1 43.2
Mixup 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9
MLDG 54.2 ± 3.0 44.3 ± 1.1 55.6 ± 0.3 36.9 ± 2.2 47.7
CORAL 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.6
MMD 41.9 ± 3.0 34.8 ± 1.0 57.0 ± 1.9 35.2 ± 1.8 42.2
DANN 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7
CDANN 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8
MTL 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6
SagNet 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6
ARM 49.3 ± 0.7 38.3 ± 2.4 55.8 ± 0.8 38.7 ± 1.3 45.5
VREx 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4
RSC 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6 46.6

SFT (Ours) 57.5 ± 0.4 44.6 ± 1.4 59.6 ± 0.5 41.0 ± 1.0 50.7

3.5. DomainNet

Table 6. Out-of-domain accuracies (%) on each domain of Ter-
raIncognita and their average.

Algorithm clip info paint quick real sketch Avg.

ERM 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
IRM 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
Mixup 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
MLDG 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2
CORAL 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5
MMD 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3
MTL 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6
SagNet 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3
ARM 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5
VREx 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9

SFT (Ours) 64.9 ± 0.0 22.0 ± 0.3 52.5 ± 0.1 16.3 ± 0.3 64.4 ± 0.1 55.6 ± 0.4 46.0

4. Full Results with ViT-B/16 and ViT-L/14

In this section, we show the full results of visual prompt
tuning with the pre-trained large-scale vision transformers
(including ViT-B/16 and ViT-L/14).

4.1. VLCS

Table 7. Out-of-domain accuracies (%) on each domain of VLCS
and their average.

Backbone Algorithms C L S V Avg.

ViT-B/16

ERM 95.9 66.2 81.8 79.7 80.9
IRM 96.5 67.7 85.0 78.7 81.9
DANN 96.6 68.3 82.1 79.8 81.7
CDANN 95.2 66.7 85.2 80.3 81.9
CORAL 96.6 67.4 84.3 81.5 82.5
MMD 95.4 67.3 83.2 81.6 81.9
IIB 97.6 65.7 84.0 82.7 82.5

SAM 96.6 68.1 84.9 84.5 83.5
SFT (Ours) 96.8 68.8 84.8 85.8 84.1

ViT-L/14
ERM 95.8 66.8 86.7 82.4 82.9
SAM 96.8 68.6 85.5 86.0 84.2
SFT (Ours) 96.6 68.7 85.0 87.2 84.4

4.2. PACS

Table 8. Out-of-domain accuracies (%) on each domain of PACS
and their average.

Backbone Algorithms A C P S Avg.

ViT-B/16

ERM 97.7 97.5 99.6 91.4 96.6
IRM 98.2 96.7 99.8 90.7 96.4
DANN 96.6 98.1 99.6 87.5 95.5
CDANN 97.4 97.8 99.9 88.7 96.0
CORAL 96.2 97.7 99.6 88.2 95.4
MMD 96.9 97.7 99.6 86.0 95.1
IIB 97.5 97.4 99.8 89.2 96.0

SAM 97.8 98.1 99.7 88.9 96.1
SFT (Ours) 98.2 98.8 99.9 90.2 96.8

ViT-L/14
ERM 99.2 99.5 99.9 96.6 98.8
SAM 99.3 99.6 99.9 96.0 98.7
SFT (Ours) 99.3 99.3 99.6 96.2 98.6

4.3. OfficeHome

Table 9. Out-of-domain accuracies (%) on each domain of Office-
Home and their average.

Backbone Algorithms A C P R Avg.

ViT-B/16

ERM 83.7 73.8 89.9 89.2 84.1
IRM 81.4 73.2 88.9 88.9 83.1
DANN 80.7 73.1 88.9 88.2 82.7
CDANN 82.6 71.1 87.9 87.5 82.3
CORAL 82.7 72.9 88.4 89.3 83.3
MMD 83.5 73.0 89.5 88.6 83.7
IIB 81.9 73.5 90.7 89.5 83.9
SWAD 84.9 74.9 90.8 89.9 85.1

SAM 84.2 76.6 91.0 90.8 85.7
SFT (Ours) 86.3 77.7 91.1 90.9 86.5

ViT-L/14
ERM 89.8 83.4 93.9 93.8 90.2
SAM 89.8 84.7 94.6 94.0 90.8
SFT (Ours) 90.8 85.2 94.5 94.5 91.3

4.4. TerraIncognita

Table 10. Out-of-domain accuracies (%) on each domain of Ter-
raIncognita and their average.

Backbone Algorithms L100 L38 L43 L46 Avg.

ViT-B/16

ERM 58.5 58.2 64.1 41.1 55.5
IRM 45.7 53.5 55.4 48.8 50.9
DANN 52.9 52.4 56.7 45.9 52.0
CDANN 58.6 51.9 61.5 47.6 54.9
CORAL 51.4 45.2 60.9 50.6 52.0
MMD 57.5 57.1 62.0 50.9 56.9
IIB 65.3 53.6 65.6 47.5 58.0

SAM 64.6 52.0 61.5 48.3 56.6
SFT (Ours) 70.7 58.3 65.3 50.5 61.2

ViT-L/14
ERM 65.1 55.1 69.6 55.4 61.3
SAM 67.3 56.4 72.8 54.8 62.8
SFT (Ours) 65.4 61.1 71.2 62.9 65.2

4.5. DomainNet

Table 11. Out-of-domain accuracies (%) on each domain of Ter-
raIncognita and their average.

Backbone Algorithms clip info paint quick real sketch Avg.

ViT-B/16

ERM 77.6 44.4 66.4 18.8 81.2 66.7 59.2
IRM 73.1 45.6 67.1 19.3 81.2 68.6 59.1
DANN 74.9 42.9 67.9 19.1 79.2 67.3 58.6
CDANN 74.7 44.5 66.1 19.2 79.2 67.0 58.4
CORAL 77.6 44.7 66.6 19.1 81.0 68.1 59.5
MMD 76.8 45.9 67.4 20.1 80.9 68.3 59.9
IIB 76.5 42.4 66.5 18.5 79.9 67.6 58.6

SAM 76.8 45.4 68.4 18.8 81.1 68.3 59.8
SFT (Ours) 77.9 46.3 68.6 19.4 81.6 68.9 60.5

ViT-L/14
ERM 82.7 54.5 73.1 23.7 84.3 74.4 65.4
SAM VPT 83.1 51.9 73.3 23.1 85.3 74.7 65.2
SFT (Ours) 83.2 55.0 75.2 24.6 86.1 75.3 66.5



5. Reproducibility
To guarantee reproducibility, we will provide an explana-
tion of the code and hyperparameters in this section.

5.1. Code
Our work is built upon DomainBed, which is released under
the MIT license. All experiments are conducted on a single
NVIDIA Tesla V100 or A40.

5.2. Hyperparameters
5.2.1. Experiments on Toy Dataset
In our toy experiments, we generate a dataset with three
classes (C1, C2 and C3) and four domains (D1, D2, D3 and
D4). There are 3 × 100 samples in each domain. We use
data from the first three domains (D1, D2 and D3) as the
training domains, with the remaining domain D4 serves as
the test domain. For simplicity, we consider the covariance
matrices to be diagonal with the same elements: Σi = σ2

i I
and Σij = σ2

ijI. The specific parameters for each domain
and class are provided in Table 12. During training, we use
a linear classifier with the Adam optimizer. The batch size
is set to 16 and the learning rate is 5e-4.

Table 12. Parameters for the generation of the toy dataset.

Classes µi σi Domains µij σij

C1 (0,
√
3/2) 0.4

D1 (0.71,1.03) 0.2
D2 (-0.04,0.20) 0.2
D3 (0.08,1.22) 0.2
D4 (-0.52,0.54) 0.2

C2 (−1/2, 0) 0.4

D1 (-0.11,0.90) 0.2
D2 (-0.45,0.15) 0.2
D3 (-0.68,0.03) 0.2
D4 (-0.81,-0.11) 0.2

C3 (1/2, 0) 0.4

D1 (1.25,-0.39) 0.2
D2 (-0.20,0.52) 0.2
D3 (0.80,0.23) 0.2
D4 (0.83,-0.12) 0.2

5.2.2. Experiments on Real Dataset
The hyperparameter search spaces for ResNet-50, ViT-B/16
and ViT-L/14 are shown below. In the table, U and list indi-
cate Uniform distribution and random choice, respectively.

Table 13. Hyperparameter search space for ResNet-50, ViT-B/16
and ViT-L/14.

Parameter ResNet50 ViT-B/16 ViT-L/14

batch size U [24, 32] U [16, 28] U [8, 16]
learning rate U [5.0e− 6, 5.5e− 5] 10U [−4.5,−3.0] 10U [−4.5,−3.0]

ResNet dropout [0.0,0.1,0.5] − −
weight decay [1e-4, 1e-6] 0.0 0.0
ρ [0.01, 0.02, 0.03, 0.05, 0.1] [0.1, 0.2, 0.3, 0.5] [0.05,0.1,0.2,0.3,0.5]
λ1 U [0, 1] U [0, 0.5] U [0, 0.5]
λ2 U [0, 1] U [0, 0.5] U [0, 0.5]
α 10U [0.5,3] 10U [0.5,3] 10U [0.5,3]

6. Broader Impacts
This paper primarily focuses on developing an effective do-
main generalization method to address the problem of do-
main shifts. Given that domain shifts are ubiquitous in real-
world applications, this work has the potential to make a
positive impact by learning models that are less biased to-
wards ethical aspects. We do not foresee any significant
negative social impact of this work.

References
[1] David A McAllester. Pac-bayesian model averaging. In Pro-

ceedings of the twelfth annual conference on Computational
learning theory, pages 164–170, 1999. 1


