Seeking Consistent Flat Minima for Better Domain Generalization
via Refining Loss Landscapes

Supplementary Material

Let us start with a brief overview of this supplementary
material. In Section 1, we perform a theoretical analysis
of the loss landscape consistency under the PAC-Bayesian
framework. The analysis shows that the sharpness of the
test loss can be constrained by that of the training domains,
which also implies the generalization of consistent flat min-
ima sought by the self-feedback training (SFT). In Section
2, we discuss the proposed projection cross-entropy loss
and the algorithm used to solve the associated KL diver-
gence minimization problem. We provide a comprehensive
derivation of the algorithm, along with a time comparison
against an implementation using the common convex opti-
mization library. Subsequently, we present the full results
obtained using Resnet-50, ViT-B/16, and ViT-L/14 in the
following two sections (Section 3 and 4). Additionally, we
offer necessary explanations of the code (in Section 5.1) and
hyperparameters (in Section 5.2) required for reproducibil-
ity. Finally, in Section 6, we assure that this research is
unlikely to have any significant negative social impact.

1. Theoretical Analysis

In this section, we will perform a theoretical analysis of the
loss landscape consistency under the PAC-Bayesian frame-
work. For clarity and ease of understanding, we first pro-
vide a detailed explanation of the relevant notations and
concepts that will be used throughout the analysis.

1.1. Notations

Let X and Y denote the input sample space and the cate-
gory space, respectively. Consider a dataset drawn from p
training distributions {D,}"_,, each defined over the joint

space X' x). Let Dy = {(:vl(d), ygd))}?:”ll denote the dataset
sampled from the d-th distribution Dy, which is referred to
as the d-th domain. (m(d) ygd)) € X x) denotes the i-th

]
sample from domain D, with ny indicating the number of
samples in the d-th domain. For convenience, we also use
z; to denote (x;, y;). Let Q and Q' denote the dataset space
and distribution space, respectively. In our analysis, domain
shifts are modeled by a mapping function w : Q — €/,
which maps one dataset to another distribution with distinct
statistical properties. We assume that the domain shifts w
follow a specific distribution W.

Our SFT framework mainly involves a model and a land-
scape refiner. Let H,,, and H,. denote the hypothesis spaces
of the model and the refiner, respectively. To analyze the
SFT within the PAC-Bayesian framework, we need to pro-
vide a description using Bayesian terms. Let M,,, M,

denote the sets of distributions over H,,, and #,. In or-
der to obtain a model from its prior distribution, we first
sample a prior distribution P for the refiner from the hyper-
prior distribution P, which is independent of training sam-
ples. Then, we use a mapping function ¢ : M, — M,,
to obtain the model’s prior distribution ¥ (P) € M,, and
sample a model f from v(P). In order to obtain a model
from its posterior distribution, we sample a posterior dis-
tribution P for the refiner from a hyper-posterior distri-
bution Q, which may depend on training samples. Then,
we apply the training algorithm to the dataset Dy € () to
obtain the model’s posterior distribution A(Dg, P), where
A Q x M, - M,, represents the function that maps
one dataset along with the refiner’s posterior distribution to
the model’s posterior distribution. Finally, we can sample a
model f from this posterior distribution.

1.2. Main Theorem

In this subsection, we first introduce a lemma that will
be used multiple times in our analysis, and then formally
present the main result, which is stated as Theorem 2.

Lemma 1 (McAllester’s bound [1]). Let X be a sample
space and H a hypothesis space of functions over X. Given
T be some prior distribution over hypothesis space H, for
bounded loss £ : H x X — [0,1] and any 6 € (0, 1], the fol-
lowing bound holds uniformly for all posterior distributions
p with probability at least 1 — §:

KL(pl|) + log (n/3)

E ((6,D) < E £6,5.) + \/
~p

O~p 2(n — 1) ’
(1)
where
0,D) =E,.pl0,z)
and

09,8,) = % > (0, z)
=1

denotes the population loss and training loss, respectively.
Sy, represents a dataset with n training samples drawn in-
dependently and identically from distribution D.

Theorem 2. Consider the domain generalization problem
with p training domains. For each training domain Dy,
we are given p — 1 training-domain pairs (Dy, Dy), where
d' # d, with each pair consisting of a training dataset Dy
of size nqg and a hold-out dataset Dy of size ng. Let the

dataset space be) and the distribution space be €Y. As-
sume that the domain shifts, denoted by w : Q@ — ', follow
a distribution V. The difference in loss sharpness between
domains Dy and Dy is defined as:

Aé(.ﬂDChDd’) = ‘ E E(fwz)_ E E(f7z)|, (2)
ZNDd ZNDd/
where ((f, z) represent the loss sharpness of the model f
evaluated on data point z. Let P denote a predefined hyper-
prior distribution over the set of all possible prior distribu-
tions for the landscape refiner. Then, for all hyper-posterior
distributions Q that ensure a sufficiently small sharpness
difference between training domains, i.e.,
Vd #d: E Alf, Dy, Dg) <e, (3

P ~Q f~A(Dg,P) (f d d)ie)
and for any 6 € (0,1], the following inequality holds with
probability at least 1 — §:

0(Q,w) < e+ (Q,Dy) +

X

KL(QIP) + E KL (A[(P)) + log 225ne
2(nd - 1)

d'#£d

KL(Q||P) + log 22=1)
+ 2(_2) .

“)

Here, (P) is the prior model distribution, and A is a
shorthand of the posterior model distribution A(Dg, P).
KL(-||-) denotes the Kullback-Leibler divergence. The term
(Q,w) is defined as:
(Quw):= E E E),

(Q w) P~Q w~W frA(Dg, P)z~w(Dd (f) ®)
which represents the expected sharpness of the model eval-
uated on the test distribution w(Dyg). The term £(Q, D) is
defined as:

R 1 &
/(Q,Dy):= E E — ((f,z), (6
(Q.Da) PNQfNA(Dd’Pmd; (f,2), (©

which represents the empirical sharpness of the model over
the training domain D,.

Proof. Firstly, we bound the loss sharpness in each of the
domain pairs. Based on the above definitions in the sub-
section 1.1, we can decompose the KL divergence term of
Lemma 1 in the following way:

KL(pn)
of) Q(P)A(Dy. P) (f)
8T () T P realbar) %8 T PPYO(P)()
B Q(P) A(Da, P) (f)
= 28 B(P) * pEo jeaton) TGP

KL(Q[P) + E KL (A(Dq, P) [l (P)). ©)

This decomposition separates the KL divergence into two
components: KL(Q|P) and PEQKL (A (Dg, P) ||1(P)).

Now, based on this, we can establish a probabilistic upper
bound on the loss sharpness. Thus, with probability at least
1 — 44, we have:

E E ,
P~Q f~A(Dg,P) z~Dd/ ((f:2)
1 &
E — E (h, z)
~ P~Q fN.A(Dd P)nd

E M h, D4, D
B n) (» Da, Dar)
KL(Q|[P) + [E KL (Al[¢(P)) + log 5

+ 1) ~®

This bound captures the generalization ability between
training domains, i.e., from domain Dy to domain D .
Next, assuming that the domain shifts w : — Q' are

governed by a distribution VW, we can apply Lemma | again
to bound the loss sharpness on the test domain w(D,). This
step is critical because it extends the generalization to the
test domains. Specifically, with probability at least 1 — ¢,
we obtain the following bound:

E E E E ¢f,z)

P~Q w~W f~A(Dg,P) zew(Dg)
E Y E ((f.2)

T P~op—1 oy f~A(Dg,P) ZNDd/

- \/ KL(Q|IP) +log 75"

©)

2(p—-2)
Here, the first term represents an average over all domain
pairs, while the second term corresponds to the KL di-
vergence between hyper-prior and hyper-posterior distribu-
tions. The confidence parameter ¢’ controls the probability
of the bound holding.

Finally, we set 6’ = §/2 and 64 = §/[2(p—1)] and apply
the union bound to combine the above results. This leads to
the final bound, which holds with probability at least 1 — 4,

E E E E {(h,z2)
Pr~Q wn~W fnA(Da,P) zrvw(Da)
<1 Y | E E Ly E (f,z)
N - Y Z’L
“p—1 o P~Q frA(Da,P) N 4
E E
PNQ fN.A(Dd,P)
KL(Q|P) + B KL (A[(P)) + log 2=

Q(nd - 1)

Af(f7 Dda Dd') +

2(p—1
KL(Q||P) + log 221
2(p —2)

(10)

The inequality above provides a comprehensive bound of
the loss sharpness on the test domains, completing the proof
of Theorem 2. O

In conclusion, this theorem shows that if domain shifts
are governed by a specific distribution and the domain shifts
in the training domains are independently and identically
sampled from this distribution, then the sharpness of the test
loss is bounded by the sharpness observed in the training
domains with high probability. In other words, the consis-
tency of the flat minima achieved in the training domains
can be transferred to unseen test domains. As a result, the
model can exhibit strong generalization performance when
applied to test domains.

2. Projection Cross Entropy

As mentioned in the main text, the projection cross entropy
(PCE) can be used as a loss term to maintain the label cor-
rectness during the refinement phase. An efficient algorithm
(Alogrithm 1) has been presented to address the associated
KL divergence minimization problem there.

In this section, we first provide the derivation of this al-
gorithm, followed by a comparison of its time efficiency
with that of widely-used convex optimization libraries. Fi-
nally, we further discuss the connections between the PCE
loss and other related loss functions.

2.1. KL Divergence Minimization

As stated in the main text, the optimization is formulated as:

min KL(y||¥) subjectto y € Cy, (11)
y

where y represents the soft label output by the landscape
refiner, and the label space C'; can be expressed as:

N
JaN) | VE# 1 g > agqe, Yy aqr =1}

k=1

(12)

Here, o > 1 is a hyperparameter that controls the minimum

ratio between ¢; and g, while NV denotes the number of

categories for classification. For ease of understanding, we
restate the problem more explicitly as follows:

Cr={(q, -

N
: di
min q; log —
i ; b
N
sty =1 q>oaq(k#1), (13
i=1

where we use (p1,...,pn) to represent y for clarity.

In the following, we will offer a detailed derivation of Al-
gorithm 1, which is capable of finding the exact optimal so-
lution to this optimization problem. The general idea of the

Algorithm 1: KL Divergence Minimization

Input: The hyperparameter «, (p1,...,pnN).
Output: The optimal solution (g1, . .., gn).
1 Initialization: A < 0, B < {jlap; > p1},t + 1.
2 Sort the elements of B in descending order:
Pjr = 2 Pjip-
3 Update: A+ AU{ji},t+t+ 1
4 whilet < |B| do

1
5 if (p? (HjeA ap]-)) AT < ap;, then
6 | Update: A« AU {ji}.t+t+1.
7 else
8 ‘ Break
9 end

10 end
1

1 Calculate g1: g1 = (pflx (H]EA ap])) Al
12 fori € {2,...,N}do
13 if i € A then

14 | % =aq/o
15 else

16 ‘ qi = Pi.

17 end

18 end

19 Normalize g1, ...,qn suchthat), q; = 1.

derivation is as follows: first, by examining the Lagrangian
function and the Karush-Kuhn-Tucker (KKT) conditions of
the problem, we obtain the general form of the optimal so-
lution. Then, we determine which constraints among the
inequality constraints hold as a strict equality (i.e., active),
and finally, we find the optimal solution based on these ac-
tive constraints.

2.1.1. Lagrangian Function and KKT Conditions

To solve the given optimization problem, we first con-
struct the Lagrangian function by incorporating the objec-
tive function and the constraints using Lagrange multipliers:

N N
4di
L(gi, ik, A) = Y _ gilog o ¥ > plage — q1)
i=1 tok=2

N

+AQ e - 1), (14)

=1

where i, > 0 represents the Lagrange multiplier for the
inequality constraint ¢; > aqy, and) denotes the Lagrange
multiplier for the equality constraint Zfil q; = 1. Then,
the Karush-Kuhn-Tucker (KKT) conditions are the neces-
sary conditions for optimality in constrained optimization
problems. We apply these conditions to the Lagrangian
function and derive the following set of equations:
1. Stationarity. The stationarity conditions require that the
partial derivatives of the Lagrangian with respect to each
of the variables be zero, which corresponds to the opti-

mality condition. For ¢;, we have the following equa-
tion:

oL al
—— =1+logq —logp1 — » p+A=0. (15
oq e
Similarly, for ¢;, where j = 2,...,n, we get:
oL
8—q:1+logqj—logpj+uja+/\:0. (16)
j

These two equations can be solved to express ¢; and g;
in terms of the Lagrange multipliers p and A. Thus, we
have the following solutions:

N
@1 = p1exp (Zuk—l—)\> (17)

k=2

and
4 = pjexp (—pja—1—=A). (18)
2. Primal feasibility. The primal feasibility condition en-
sures that the original constraints are satisfied. There-

fore, we have:
ag; —q1 < 0. (19)

3. Dual feasibility. The dual feasibility condition imposes
non-negativity on the Lagrange multipliers associated
with the inequality constraints:

1y > 0. (20)

4. Complementary slackness. Finally, the complementary
slackness condition relates the primal and dual variables.
In this case, the complementary slackness condition for
the inequality constraint is:

pj(agq; —q1) = 0. 21

This condition implies that either y1; = 0 or aq; = ¢ (or
both). It ensures that if the constraint is inactive (i.e., it
holds as a strict inequality), the corresponding multiplier
is zero, and if the multiplier is positive, the correspond-
ing constraint is active (i.e., it holds as a strict equality).

In the following, we can obtain the general form of the
optimal solution by examining the two cases of ¢ > 0 and
1 = 0 as per the KKT conditions.

* Casel: u; > 0.

If ; > 0, from the stationarity condition and comple-
mentary slackness, we can derive the following equation:

ag; = apjexp (—pjo—1—A)

N
=q1 = prexp (Z e —1— A) . 22)
k=2

Through a simple manipulation of the equation, we can

obtain:

o exp(—pa) 23)

apj exp(p_y k)
Since p; > 0 in this case, the right side of the above
equation is less than 1. In other words, if p; > ap;,
then we can determine that y; = 0. On the other hand,
by setting the value of j in equation (22) and multiplying
these expressions together, we can obtain the following
relationship:

aexp(=a’y) [T ps = p exp(Al Y).
JEA JEA keA
(24)
Here, A is defined as the set of indices & such that j;, > 0,
ie., A := {klur > 0}. |A| denotes the cardinality of set
A. Then, we can derive:

exp(>) = (or N ep) ™. 25)

keA JjEA

By using the above equation, we can express ¢; and g;
without using ;-

g1 = ag; = exp (—1 = N ([] aps) ™7, 26)
JEA

* Case 2: p1; = 0.
If p1; = 0, g; can be easily expressed without using 1

g; =pjexp(—1—A). 27

Then, by using the equations (22), (26) and (27), we can
also express the objective function without using y;:

N
Y qilog = (140 (28)
i=1 pi

Finally, by applying the normalization condition
> i=1@ = 1, we can solve for the value of \ using the
following equation:

B A, . 1
exp(1+A) = (1+7) (p] (H ap;)) A+ > p;.
JEA JEAU{1}
(29)
2.1.2. Determine Active Constraints

To determine the active constraints, we have the following
proposition, which directly leads to the formulation of Al-
gorithm 1.

Proposition 3. Consider the optimization problem in (13).
Let A be the set of indices k such that p, > 0, i.e, A :=
{k|pr > 0}. Define B as the set {pj|lap; > p1}. Sort the
elements of B in descending order as:

pjl ijz 2 ij‘B‘. (30)

Note that duplicate elements in B are not removed. Then,

the following conclusions holds:

1. The index ji, which corresponds to the largest element
in B, must belong to A, i.e., j; € A.

2. Forany C = {j1,...,5:—1} C A, if the inequality

([T ep)) 7= < ap;, 31)
jeC

holds, then j; € A. Otherwise, for all s € {t,t +
., |B|}, we have js ¢ A. Thatis, A = C.

Proof. Firstly, we can prove that j; € A. To do so, assume
for the sake of contradiction that j; ¢ A. By using equa-
tions (26) and (27), we obtain the following expression for

qi1:

g1 = exp()5 (T awy)) ==
JjeA
< exp (=1 —A)((apj,) H apj,)) \AHa
JEA
=aexp (—1— A)p;, = agj,- (32)

Here, the first equality follows from the equation (26), and
the inequality in the second-to-last line is based on the def-
inition of B, in which p; < apj;,. The first equality in
the last line is simply an identity transformation, and the
last equation uses the equation (27) under the assumption
that j; ¢ A. The above analysis shows that ¢; < agj,,
which clearly violates the inequality constraints of the orig-
inal problem. Thus, our assumption that j; ¢ A must be
false.

Secondly, we consider the case where C =
{j1,---yJi—1} C A, and we assume that the inequal-
ity

1
@S (][] eps)) @7 < ap;, (33)
jec

holds. We now want to prove that j; € A. Suppose, for
contradiction, that j; ¢ A. In this case, we proceed as fol-
lows. Using the equations (26) and (27), we can express q;
as:

g1 = exp (Y@ ([T aps)) ™=
JEA
1
= exp (YPF ([T ap)([i)™=
jecC jJEA-C
1
<exp ()(p? H ap;)(H apj,)) AT+
jec jeA-C
1
<exp (=1 =N ((ap;) T] apj,))e
jeA—C
=aexp(—1—N\)p;, = agj,. (34)

The first equality uses equation (26). The first inequality
follows from the fact that p;, > p; forany j € A—C, which
is because the elements of B have been sorted in descending
order. The second inequality uses the condition stated in
(33). The last equality follows from equation (27) under
the assumption that j; ¢ A. The above analysis shows that
q1 < agj,, which, again, violates the inequality constraints
of the original problem. Hence, our assumption that j; ¢ A
is false, and it holds that j; € A.

Finally, we address the case where the inequality (33)
does not holds. In this case, forall s € {¢t,t +1,...
we assert that j; € A. We will now prove this by consider-
ing two cases. In the first case, we assume that there exists

some js € A such that p§(][;cc ozpj))lc\lJra > ap;,. If
js € A, we then have:

Z%IOg* =

—(1+2X)

ap;))

= o |0+ I g T

JjECU{js}
+ Y p (35)
JECU{1,55}

The equations (28) and (29) have been applied above. How-
ever, if j; ¢ A, we have

N
qi
E gilog — =
i=1 pi
= —1 1 @ o . \C\l-m .
=—log [(1+ a)(Pl(Hapj)) + § Dj

jec jgcu{1}
(36)

—(1+2X)

Now we consider the function of p;_ :

ol . \
f@g=u+%wmq1wmmw+ms
jeC
_ (‘Cl +1 apjé H ap \C’|+1+u.
jec
(37)

Then, the first derivative of f(p;,) with respect to p;, is
given by:

1 1 %_1
f'(p.) = 1—5(0417?(]_[ap;)) TeFTFE p ST (38)
jec
Obviously,
creases, and f'((p¢ (Hjecapj))\clﬁ) = 0. Since

f'(p;,) increases gradually as p;, in-

(pT(Ijec ops)) CIFE > ap;., we can get

1, . 1
f(ps.) > f(a(pl'(H ap;))TeFe) =0. (39
jec
From equation (39), we can observe that the value of the
objective function is smaller if js ¢ A. In the second case,

1
if there exists j, such that (p§(][;cc ap;)) @+ = ap;,
and j; € A, we have

q1
4, = o
1 1
= —exp (=1 = N (pf (ep;) ([] epy)) =
jEC
=p;, exp(—1—A), (40)

which leads to the conclusion that p; = 0 according to
the equation (18), contradicting the definition of the set
A. Hence, no such js can exist. In conclusion, for all
se{t,t+1,...,|B|},itholds that js & A.

O

At this time, we have successfully identified the active
set A. Subsequently, we can obtain the optimal solution by
applying equations (26), (27), and (29), which leads to the
formulation of Algorithm 1.

2.2. Time Efficiency

Although the proof may be somewhat intricate, it is worth
emphasizing that Algorithm 1 exhibits significantly higher
efficiency in comparison to conventional convex program-
ming tools such as MOSEK. The table below presents the
average time taken by the classical convex programming
tool (MOSEK) and the proposed Algorithm 1 over 1000
runs. It is evident that for NV = 100, Algorithm | consumes
only around one-tenth of the time required by traditional
convex programming tools.

Table 1. Comparisons about average training time required by Al-
gorithm | and the MOSEK tool.

‘ MOSEK ‘ Algo. 1 (Ours) ‘ Speedup ratio

Time (Avg.) | 21.93ms | 2.16 ms \ 10.15

2.3. Further Discussion

By examining Algorithm 1, we can find that if « is suffi-
ciently large such that |A| = N — 1, the optimal soft labels
degenerate into smoothed labels with a label smoothing fac-
tor of s = N/(a — 1+ N). Furthermore, as « increases
towards infinity, the optimal soft labels converge towards
one-hot labels. Then, the PCE loss degenerate into the tra-
ditional cross entropy.

3. Full Results with ResNet-50

In this section, we demonstrate the full results of our exper-
iments that were carried out on five well-known benchmark
datasets, including VLCS, PACS, OfficeHome, Terralncog-
nita and DomainNet. These experiments were conducted
using ResNet-50, which was pre-trained on ImageNet.

3.1. VLCS

Table 2. Out-of-domain accuracies (%) on each domain of VLCS
and their average.

Algorithms | C L S v | A
ERM 97.7 04 64.3 09 734 05 746 13 71.5
IRM 98.6 0.1 64.9 +09 734 x06 773 +09 78.5
GroupDRO 97.3 x03 63.4 +09 69.5 08 76.7 07 76.7
Mixup 98.3 £ 06 64.8 + 1.0 72.1 05 743 08 71.4
MLDG 97.4 02 652 +07 710 +14 753 +10 712
CORAL 98.3 +o01 66.1 +12 734 103 775 12 78.8
MMD 97.7 01 64.0 + 1.1 728 x02 753 £33 715
DANN 99.0 03 65.1 +14 73.1 03 77.2 06 78.6
CDANN 97.1 £03 65.1 +12 70.7 08 771 +15 715
MTL 97.8 +04 64.3 +03 715 +07 753 +17 772
SagNet 97.9 04 64.5 05 714 +13 775 +0s 778
ARM 98.7 £02 63.6 £07 71312 76.7 06 77.6
VREx 98.4 03 644 +14 74.1 04 76213 78.3
RSC 97.9 01 62.5 +07 72312 75.6 +08 77.1
SFT (Qurs) | 99.5+01 662 +02 74.8 +05 787+04 | 798
3.2. PACS

Table 3. Out-of-domain accuracies (%) on each domain of PACS
and their average.

Algorithms | A C P S Avg.
ERM 84.7 04 80.8 £ 06 972 +03 793 10 85.5
IRM 84.8 +13 76.4 + 1.1 96.7 + 06 76.1 + 10 83.5
GroupDRO 83.5 +09 79.1 +06 96.7 +03 78.3 120 84.4
Mixup 86.1 £05 78.9 + 038 97.6 0.1 758 18 84.6
MLDG 85.5 £ 14 80.1 £17 974 +03 76.6 + 1.1 84.9
CORAL 88.3 £02 80.0 £05 97.5 03 78.8 13 86.2
MMD 86.1 £ 14 794 +09 96.6 =02 76.5 +0s 84.6
DANN 86.4 o8 774 +o08 973 04 73523 83.6
CDANN 84.6 £1s 75.5+09 96.8 03 73.5+06 82.6
MTL 87.5 £o0s 77.1 05 96.4 08 773 +18 84.6
SagNet 874 £ 10 80.7 06 97.1 01 80.0 £ 04 86.3
ARM 86.8 +06 76.8 05 97.4 +03 793 12 85.1
VREx 86.0 + 1.6 79.1 06 96.9 + 05 777 17 84.9
RSC 85.4 o8 79.7 +18 97.6 03 782 +12 852
SFT (Ours) ‘ 90.1 £03 80.3 £10 98.6 02 84.3 £14 88.3
3.3. OfficeHome

Table 4. Out-of-domain accuracies (%) on each domain of Office-
Home and their average.

Algorithms | A C P R | A
ERM 61.3 £07 524 +03 75.8 0.1 76.6 +03 66.5
IRM 589 +23 522 +16 72.1 29 74.0 25 643
GroupDRO 60.4 07 52710 75.0 =07 76.0 £07 66.0
Mixup 624 +0s8 54.8 +06 769 03 78.3 +02 68.1
MLDG 61.5 09 532 +06 750 12 77.5 04 66.8
CORAL 653 04 544 x0s 76.5 0.1 78.4 xo0s 68.7
MMD 60.4 +02 533 +03 74.3 x0.1 774 +06 66.3
DANN 599 +13 53.0 +03 73.6 +07 76.9 +o0s 65.9
CDANN 61.5 414 504 +24 74.4 +09 76.6 +0s 65.8
MTL 61.5 +07 524 +o06 74.9 +o04 76.8 +04 66.4
SagNet 63.4 £02 54.8 +04 75.8 04 78.3 03 68.1
ARM 589 +os 51.0 05 74.1 01 752 +03 64.8
VREx 60.7 =09 53.0+09 75.3 01 76.6 +05 66.4
RSC 60.7 =14 51403 748 11 75.1+13 65.5
SFT (Qurs) | 65.8+03 58.8 403 783 +04 80.6+02 | 709

3.4. Terralncognita 4.2. PACS

Table 8. Out-of-domain accuracies (%) on each domain of PACS
Table 5. Out-of-domain accuracies (%) on each domain of Ter- and their average.
ralncognita and their average.

Backbone | Algorithms A [¢ P S Avg.
- ERM 97.7 975 99.6 91.4 96.6
Algorithms ‘ L100 L38 L43 L46 Avg. IRM 982 96.7 99.8 90.7 96.4
ERM 49.8 44 42.1 +14 56.9 18 35.7 £39 46.1 DANN 96.6 98.1 99.6 87.5 95.5
IRM 54.6 +13 398 19 562 18 39.6 08 47.6 CDANN 97.4 97.8 99.9 88.7 96.0
GroupDRO 41.2 +07 38.6 + 2.1 56.7 +09 36.4 +2.1 432 ViT-B/16 CORAL 96.2 91.7 99.6 88.2 95.4
Mixup 59.6 £20 422 +14 559 o8 33914 419 MMD 96.9 971.7 99.6 86.0 95.1
MLDG 54.2 +30 443 +11 55.6 £03 369 +22 47.7 1B 97.5 97.4 99.8 89.2 96.0
CORAL 51.6 £24 422+10 57.0 =10 39.8 £29 47.6 SAM 978 08.1 99.7 88.9 96.1
MMD 41.9 £30 348410 57.0+19 352+18 422 SFT (Ours) 98.2 98.8 99.9 90.2 96.8
DANN S11+3s 40.6 06 574 xo0s 377 18 46.7
CDANN 47.0 £ 10 413 a8 549+17 39.8 23 458 ERM 99.2 99.5 99.9 96.6 98.8
MTL 493 x12 39.6 463 556411 378 208 45.6 VIT-L/14 SAM 993 99.6 999 96.0 98.7
SagNet 53.0+29 43.0 +25 579 +06 404 +13 48.6 SFT (Ours) 99.3 99.3 99.6 96.2 98.6
ARM 49.3 +07 38.3 424 558 £ 08 38713 455
VREx 48.2 £43 41.7 +13 56.8 £08 38.7 £31 46.4
RSC 502 +22 392414 563 +14 40.8 £ 06 46.6
SFT (Ours) ‘ 57.5 +04 44.6 +14 59.6 £05 41.0 +10 50.7 4‘3' OfﬁCEHome

Table 9. Out-of-domain accuracies (%) on each domain of Office-
Home and their average.

3.5. DomainNet

Backbone | Algorithms | A [¢ P R | A
ERM 83.7 73.8 89.9 89.2 84.1
IRM 81.4 732 88.9 88.9 83.1
1 H 3 DANN 80.7 73.1 88.9 88.2 82.7
Table 6. Out-of-domain accuracies (%) on each domain of Ter- AN o ~ e o e
raIncognlta and thelr average. ViT-B/16 CORAL 82.7 729 88.4 89.3 83.3
MMD 83.5 73.0 89.5 88.6 83.7
1IB 81.9 735 90.7 89.5 83.9
Algorithm | clip paint quick real sketch Avg. SWAD 849 749 %038 899 85.1
ERM 58105 467505 122204 96+01 498204 | 409 SAM 84.2 76.6 91.0 90.8 857
IRM 485428 383143 109205 482452 423401 339 SFT (Ours) 86.3 71.7 911 90.9 86.5
GroupDRO 472+05 33805 93+03 516 +04 40.1 +06 333 ERM 298 834 93.9 93.8 902
Mixup 557403 443 05 12,5 204 55.8 403 482 05 39.2 T 9 K 9
MLDG 59.1 +02 45.8 +07 134 =03 59.6 +02 50.2 04 412 VITL/14 :pA]IYIO) S()J: z:; ;jg ;Z[S) 2[1)2
CORAL 59.2 501 466 +03 3. 59.8 402 50.1 +06 415 (Qurs - - - - -
MMD 32,1 £133 268 £ 113 8.7 +21 327 138 289 + 119 234
DANN 53.1 02 442 07 11.8 + 0.1 55.5 +04 46.8 + 06 383
CDANN 54.6 +04 437 209 121 207 56.2 404 459 +0s 383 4 4 T I .
MTL 579 +os 46.0 +01 125 01 59.5 +03 492 £ 01 40.6
SagNet 577 +03 453 403 127 +05 58.1 405 48.8 02 403 4. lerra ncognlta
ARM 49.7 +03 16.3 05 409 + 11 9.4 01 534 o4 435 £ 04 355
VREx 473 +35 16.0 +15 358 +46 109 +03 49.6 +49 42.0 +30 336
RSC 550 12 .. 444 o6 122 +02 55.7 +o071 47.8 £09 389
SFT(Ours) | 649100 22003 525501 16303 64.4 501 55.6 <04 160 Table 10. Out-of-domain accuracies (%) on each domain of Ter-
ralncognita and their average.
Backbone | Algorithms | L100 L38 143 L46 Avg.
3 3 3 ERM 58.5 58.2 64.1 41.1 555
4. Full Results with ViT-B/16 and ViT-L/14 o GRST G oo Fo S o
DANN 529 52.4 56.7 459 52.0
CDANN 58.6 51.9 61.5 47.6 549
: : : ViT-B/16 CORAL 51.4 452 60.9 50.6 52.0
In this section, we show the full results of visual prompt MMD P s 20 00 S0
: . : ot 1IB 65.3 53.6 65.6 475 58.0
tuning with the pre-trained large-scale vision transformers
. . . X SAM 64.6 52.0 61.5 483 56.6
(including ViT-B/16 and ViT-L/14). SFT (Ours) 707 58.3 653 50.5 612
ERM 65.1 55.1 69.6 55.4 61.3
ViT-L/14 SAM 67.3 56.4 72.8 54.8 62.8
SFT (Ours) 65.4 61.1 71.2 62.9 65.2
4.1. VLCS
.
4.5. DomainNet
Table 7. Out-of-domain accuracies (%) on each domain of VLCS Table 11. Out-of-domain accuracies (%) on each domain of Ter-
and their average. ralncognita and their average.
Backbone | Algorithms | [L S v | Ave Backbone | Algorithms | clip info paint quick real sketch | Avg.
ERM 95.9 66.2 81.8 79.7 80.9 ERM 77.6 44.4 66.4 18.8 81.2 66.7 59.2
IRM 96.5 67.7 85.0 78.7 81.9 IRM 73.1 45.6 67.1 19.3 81.2 68.6 59.1
DANN 96.6 68.3 82.1 79.8 81.7 DANN 74.9 429 67.9 19.1 79.2 67.3 58.6
CDANN 95.2 66.7 85.2 80.3 81.9 CDANN 74.7 44.5 66.1 19.2 79.2 67.0 58.4
ViT-B/16 CORAL 96.6 67.4 84.3 81.5 82.5 ViT-B/16 CORAL 77.6 44.7 66.6 19.1 81.0 68.1 59.5
MMD 95.4 67.3 83.2 81.6 81.9 MMD 76.8 459 67.4 20.1 80.9 68.3 59.9
1IB 97.6 65.7 84.0 82.7 82.5 1B 76.5 424 66.5 18.5 799 67.6 58.6
SAM 96.6 68.1 84.9 84.5 83.5 SAM 76.8 454 68.4 18.8 81.1 68.3 59.8
SFT (Ours) 96.8 68.8 84.8 85.8 84.1 SFT (Ours) 719 46.3 68.6 19.4 81.6 68.9 60.5
ERM 95.8 66.8 86.7 82.4 82.9 ERM 82.7 545 73.1 237 843 744 65.4
VIiT-L/14 SAM 96.8 68.6 85.5 86.0 84.2 VIiT-L/14 SAM_VPT 83.1 51.9 733 231 85.3 74.7 65.2
SFT (Ours) 96.6 68.7 85.0 87.2 84.4 SFT (Ours) 83.2 55.0 752 24.6 86.1 75.3 66.5

5. Reproducibility

To guarantee reproducibility, we will provide an explana-
tion of the code and hyperparameters in this section.

5.1. Code

Our work is built upon DomainBed, which is released under
the MIT license. All experiments are conducted on a single
NVIDIA Tesla V100 or A40.

5.2. Hyperparameters
5.2.1. Experiments on Toy Dataset

In our toy experiments, we generate a dataset with three
classes (C', C's and C'3) and four domains (D1, D5, D3 and
D). There are 3 x 100 samples in each domain. We use
data from the first three domains (D, Dy and D3) as the
training domains, with the remaining domain D, serves as
the test domain. For simplicity, we consider the covariance
matrices to be diagonal with the same elements: ; = 021
and X;; = J%I. The specific parameters for each domain
and class are provided in Table 12. During training, we use
a linear classifier with the Adam optimizer. The batch size
is set to 16 and the learning rate is Se-4.

Table 12. Parameters for the generation of the toy dataset.

Classes i o; Domains Hij 0ij
D, (0.71,1.03) 0.2
D, (-0.04,020) 0.2
i (0.V3/2) 04 Dy 0.08,1.22) 02
Dy (-0.52,054) 02
D, (-0.11,090) 02
D, (-045,0.15) 0.2
& (-1/2,0) 04 Dy (-0.68,0.03) 0.2
Dy (-0.81,-0.11) 0.2
D; (1.25,-039) 02
D, (-0.20,0.52) 0.2
Cs (1/2,0) 04 D; (0.80,023) 02
Dy 0.83,-0.12) 0.2

5.2.2. Experiments on Real Dataset

The hyperparameter search spaces for ResNet-50, ViT-B/16
and ViT-L/14 are shown below. In the table, U and list indi-
cate Uniform distribution and random choice, respectively.

Table 13. Hyperparameter search space for ResNet-50, ViT-B/16
and ViT-L/14.

Parameter | ResNet50 ViT-B/16 ViT-L/14
batch size Ul[24, 32 U[16,28] U8, 16]
learning rate U[5.0e — 6,5.5¢ — 5] 10V[=45,-3.0] 10VI=4:5,-3.0]
ResNet dropout [0.0,0.1,0.5] — —

weight decay [1e-4, le-6] 0.0 0.0

P [0.01,0.02,0.03,0.05,0.1] [0.1,0.2,0.3,0.5] [0.05,0.1,0.2,0.3,0.5]
A1 Ulo,1] U[0,0.5] U0,0.5]

A2 Ulo,1] U[0,0.5 U[0,0.5]
a 10U10:5.3] 10U10:5.3] 10V10-5.3]

6. Broader Impacts

This paper primarily focuses on developing an effective do-
main generalization method to address the problem of do-
main shifts. Given that domain shifts are ubiquitous in real-
world applications, this work has the potential to make a
positive impact by learning models that are less biased to-
wards ethical aspects. We do not foresee any significant
negative social impact of this work.

References

[1] David A McAllester. Pac-bayesian model averaging. In Pro-
ceedings of the twelfth annual conference on Computational
learning theory, pages 164—170, 1999. 1

