
ShiftwiseConv: Small Convolutional Kernel with Large Kernel Effect

Supplementary Material

Appendix A: Inference Throughput Measure-
ment
In Table 7, we present a comparison of inference through-
put. These measurements were conducted on an A100-
80GB GPU, using an input resolution of 224 × 224 pix-
els. The experiments were carried out with PyTorch version
2.0.0 in conjunction with cuDNN version 11.8.0, employing
FP32 precision. As shown in Table 7, our algorithm is no-
tably slower than SLaK [35] and UniRepLKNet [17], with
throughput on the A100 GPU at approximately 3/5 and 1/3
of the latter two, respectively.

Utilizing PyTorch’s operators, which have not been
specifically optimized for large kernel convolutions, our ap-
proach yields throughput comparable to SLaK. However, in
this scenario, reparameterization (Rep) impedes SLaK’s in-
ference speed, reducing throughput by half. This decline
is attributed to the merging of strip-like convolutions into a
larger convolution, resulting in a substantial number of zero
values.

Appendix B: Operator Optimization
Our SW operator possesses four key attributes that facil-
itate optimization. These characteristics are conducive to
enhancing the operator’s efficiency.

B.1 Computational Density
RepLKNet [16] defends the efficiency of large kernels by
demonstrating that small depth-wise (DW) convolutions
have a low computation vs. memory access cost ratio, which
can render DW operations inefficient on GPUs. As kernel
size increases, computational density enhances. Our SW
operator, as detailed in section Sec. 3, employs group con-
volutions that take a single input and yield multiple out-
puts, matching the computational density of SLaK’s strip-
like convolutions. Large kernel convolutions, influenced by
padding, display reduced computational density at the edges
of feature maps, correlating with an arithmetic sequence re-
lated to kernel size. In contrast, the small convolutions in
our algorithm are less affected by padding’s impact on com-
putational density.

B.2 Operator Optimization
In general, our SW operator capitalizes on the outputs from
shared convolutions and stacks them spatially. This spa-
tial stacking operation processes inputs and outputs from
the same row or column, which minimizes data loading
costs and thereby confers optimization benefits. Specifi-
cally, with E denoting the number of edges (section Sec. 3),

Table 7. Inference throughput comparison. The results are re-
ported in FP32 precision. We conducted this experiment using
an A100-80GB GPU with PyTorch 2.0.0 + cuDNN 11.8.0. The
symbol ⋆ indicates the use of efficient large-kernel convolutions
provided by RepLKNet [16]. The symbol ® denotes Rep.

Method Throughput (img/s) IN-1K acc.

SW-tiny 378 83.4
SLaK-T ®⋆ [35] 638 82.5
UniRepLKNet-T [17] 1125 83.2
SLaK-T [35] 371 82.5
SLaK-T ® [35] 174 82.5

SW-small 243 83.9
SLaK-S ®⋆ [35] 385 83.9
UniRepLKNet-S [17] 689 83.8
SLaK-S [35] 217 83.8
SLaK-S ® [35] 108 83.8

each pixel in the input or output undergoes at most 2E + 1
moves. Using atomicAdd for these moves on output pixels
can cause delays due to synchronization. However, mov-
ing these operations to shared memory can effectively avoid
such delays. Moreover, with E defaulted to 4 in this study,
the shared memory size required is relatively small.

B.3 Sparsity Gain
Our SW algorithm applies coarse-grained pruning to elim-
inate filters, significantly reducing the computational load
during convolutions. Section Sec. 5 offers an analysis of
the resulting sparsity levels. Considering B.1, the operator
maintains a high computation vs. memory access cost ratio
even with sparsity, ensuring a high computational ceiling.
Importantly, our approach preserves the module’s structure,
sidestepping the common issues associated with pruning.

B.4 Operator Fusion
The convolution and SW operator are executed sequentially,
permitting further operator fusion. This can eliminate the
need to transfer data to external memory, using high-speed
on-chip storage to complete both operations in one step,
conserving VRAM and reducing data loading times.

The version of our SW operator in use is based on atom-
icAdd and remains unoptimized. The development of an
efficient operator that effectively utilizes these features re-
quires the expertise of a skilled CUDA programmer.

Appendix C: Training Configurations
C.1 Phases of Config Evolution
In experiments #0 to #23, we employed the hyperparame-
ters from SLaK, as detailed in Table 8 under SLaK-T. The
top-performing model configuration #20 achieved a final



accuracy of 82.70% after training for 300 epochs. Upon
observing the model’s performance at 120 epochs, we sus-
pected overfitting in the 300-epoch training regime. To ad-
dress this, we selected parameters aimed at mitigating over-
fitting. We also observed that UniRepLKNet-T’s hyperpa-
rameters closely resembled those of SLaK-T, albeit with
shorter warmup phases and higher dropout rates. Guided
by these insights, we combined SLaK-S’s sparsity-related
hyperparameters with UniRepLKNet-T’s to set the config-
uration for SW-T, as shown in Table 8. This approach al-
lowed our SW-T model to outperform both SLaK-T and
UniRepLKNet-T, reaching an accuracy of 83.39%. No-
tably, with this configuration, the model’s accuracy after
120 epochs of training was 82.27%, the same as #20. Lever-
aging this observation, we conducted an experiment (#25)
removing the SE module, akin to #19 which had achieved
82.25%. However, in this instance, the accuracy decrease
was more pronounced, dropping to 82.14% (Table 9).

The incorporation of these new hyperparameters intro-
duced some variability in model performance (#19 vs. #25).
However, these differences did not significantly impact the
overall conclusions drawn from our trials. The primary ob-
jective of our paper is to achieve the effects of large ker-
nel convolutions using small convolutions. Consequently,
in addition to the emerging variables (C.2), we continue
to utilize the previous parameter configurations and net-
work structures as informed by our experiments. Although
our model’s hyperparameters are not yet optimal, we have
achieved our initial goal. We hope our research will inspire
further studies. Detailed training commands for ImageNet-
1K are included in the released code.

C.2 Emerging Variables

Our approach introduces novel variables that have not been
previously considered in related research, such as the syn-
chronization frequency of sparse masks and the number of
edges in spatially stacked convolutions. These variables sig-
nificantly influence model performance. For instance, ad-
justing the initial sparsity values (#15) has been shown to
lead to substantial improvements compared to #11. The in-
terplay among these variables requires further investigation.
Sparse methods illustrate the need for a comprehensive con-
sideration of multiple factors. In our study, experiments
manipulating the initial sparsity values (#15) and the spar-
sity variations throughout the training process (#17) both
significantly influenced the final model performance. How-
ever, these implementations employed different methodolo-
gies. This underscores the importance of effectively unify-
ing these elements on a theoretical level. After all, the mod-
ified pruning method in our study did not utilize data from
the training process but relied on the gradient status at cer-
tain steps to influence synchronized sparsity. Such a prun-
ing approach may disproportionately affect small weights

Table 8. We trained our model on ImageNet-1K using 8 NVIDIA
GTX 4090D GPUs with the following hyperparameters. “only L”
indicates whether sparsity pruning is applied only to large kernels,
“u” refers to the update frequency of the sparse mask, “width fac-
tor” denotes the factor of change in the number of channels in the
model, “magnitude” represents the pruning process where param-
eters are sorted by their absolute values and the least significant
ones are removed, and “magnitude sum” means the pruning pro-
cess where filters are sorted by the sum of their absolute values
and the least significant filters are eliminated, respectively.

settings SLaK-T SW-tiny SW-small

input scale 224 224 224
batch size 4096 4096 4096
optimizer AdamW AdamW AdamW
LR 4×10−3 4×10−3 4×10−3

LR schedule cosine cosine cosine
weight decay 0.05 0.05 0.05
warmup epochs 20 5 5
epochs 300 300 300

mixup alpha 0.8 0.8 0.8
cutmix alpha 1.0 1.0 1.0
erasing prob. 0.25 0.25 0.25
label smoothing ε 0.1 0.1 0.1

sparse init snip snip snip
width factor 1.3 1.0 1.0
depths [3, 3, 9, 3] [3, 3, 18, 3] [3, 3, 27, 3]
dims [96, 192, 384, 768] [80, 160, 320, 640] [96, 192, 384, 768]
kernel size [51, 49, 47, 13, 5] [51, 49, 47, 13, 3] [51, 49, 47, 13, 3]
u 2000 100 100
prune magnitude magnitude sum magnitude sum
only L False True True

Table 9. We conducted analysis experiments to evaluate the
model’s performance before and after the hyperparameter update.
In ablation studies, we analyzed the impact of ghost and sparsity
on the model’s performance.

SW-tiny IN-1K acc. IN-1K acc.
(120 epochs) (300 epochs)

#19 #20 - SE 82.25 -
#20 the best one 82.27 82.70
#24 u100 82.27 83.39
#25 #24 - SE 82.14 -

#26 #24 - ghost - 82.99
#27 sparsity(0.3→0.2) - 83.46

near a given threshold, potentially leading to insignificant
changes and inconsistent predictions. For details on those
parameter settings and their implications, please refer to the
training commands on GitHub.

Appendix D: Structure Options
Interleaving Large and Small Convolutional Kernels Ex-
periment #23, which interleaved large and small convolu-
tional kernels, yielded performance comparable to our final
model structure #20 and reduced the parameter count (Table
8). Despite these advantages, we opted not to adopt UniRe-
pLKNet’s such structural configuration for three reasons:
(1) We aimed to design SW as a plug-and-play module. (2)
The equivalent large kernel convolutions in SW consume
fewer parameters, eliminating the need to balance their us-
age with the model’s total parameters. (3) Most importantly,



Figure 7. The qualitative analysis of detection and segmentation results on the COCO dataset. Distinct categories are highlighted with
unique colors. This analysis reveals that our method effectively identifies challenging objects, including densely packed entities, those with
occlusions, objects in low-light conditions, scenes with significant foreground-background ambiguity, and small objects.

0 200 400 600 800 1000
0

200

400

600

800

1000

RepLKNet [31, 29, 27, 13]

0.2

0.4

0.6

0.8

1.0
0 200 400 600 800 1000

0

200

400

600

800

1000

SLaK [51, 49, 47, 13]

0.2

0.4

0.6

0.8

1.0
0 200 400 600 800 1000

0

200

400

600

800

1000

SW [51, 49, 47, 13]

0.2

0.4

0.6

0.8

1.0

Figure 8. Effective receptive fields (ERFs) comparison.

the parameters saved were insufficient to significantly in-
crease the model’s depth or width.

Sparsity and Ghost-like Structures These are key features
of the SW architecture, but their necessity is under scrutiny.
Both are closely related to our foundational experiments
with SLaK. Experiments #24 and #26 confirm that ghost
structures enhance model performance (Table 8). Sparsity,
however, is more complex. Early experiments #15 and #16
suggest that its role is similar to adjusting the initial sparsity
levels across model layers. Additionally, comparing experi-
ments #24 and #27 reveals that reducing sparsity can further
improve overall model performance (Table 8). Given the
inherited settings from SLaK and the complexities within
sparsity that require further analysis, we have retained spar-
sity in our experiments for this study.

While these structures indicate that some parameters
have not been fully optimized, they have satisfied our initial
exploration into convolutional kernel sizes. The pursuit of
hyper-parameters to saturate the accuracy of our proposed
structure is beyond the scope and resources of this paper.

Figure 9. PeLK’s [4] focus and blur mechanism, which emu-
lates human peripheral vision. Although our conceptual approach
differs from PeLK’s, our ERF coincidentally aligns closely with
PeLK’s mechanisms.

Appendix E: Scaling Issues

Our study refrains from testing models with larger param-
eter and computational demands for three primary reasons:
(1) We have inherited hyperparameters from SLaK [35] and
UniRepLKNet [17], yet our model is not saturated. There
is potential for performance gains through hyperparame-
ter tuning (#27 vs. #24), which underscores the urgency
for increased computational resources. (2) Custom hyper-
parameters are required for models of varying sizes, and
given our method involves more hyperparameters and unop-
timized operators, the costs are prohibitive. (3) Our focus
is on the scientific exploration of utilizing small convolu-
tions as substitutes for large ones. We present performance
benchmarks for models that possess parameter and FLOPs
comparable to those of ResNet50 and ResNet101.



Appendix F: Analysis
F.1 Qualitative Analysis
We present qualitative analysis results, as shown in Fig. 7,
providing an intuitive understanding of our model’s perfor-
mance on COCO. We selected a subset of challenging im-
ages from the COCO dataset and draw the predicted detec-
tion boxes and segmentation results on them. It is evident
that our model effectively recognizes objects under various
lighting conditions, across different object sizes, amidst oc-
clusions, and against complex backgrounds. The segmen-
tation results feature well-defined visual boundaries, like
mobile phones and skateboards. The SW operator demon-
strates robust marginal detection capabilities in these com-
plex tasks. Such performance lays a solid foundation for the
future integration of this module into self-supervised learn-
ing or sophisticated generative tasks.

F.2 Visualization of ERFs.
In accordance with the method used by RepLKNet [16]
and SLaK [35] for generating Effective Receptive Fields
(ERFs), we have obtained a 1024×1024 matrix, as illus-
trated in Fig. 8. For further details on the generation pro-
cess, refer to SLaK [35]. Our ERFs contrasts with theirs by
displaying robust correlations within the immediate neigh-
borhood that diminish progressively with distance. Our
ERFs pattern is more predictable, which better comple-
ments the sliding window mechanism of convolutions. De-
spite our conceptual divergence from PeLK [4] and the re-
sulting disparity in convolutional design, our ERFs closely
mirrors PeLK’s focus and blur mechanisms (Fig. 9).


	Introduction
	Related Work
	Large Convolutional Kernels
	Shift Operation
	Ghost and Re-parameterization

	Architecture Design
	Background
	Replacement Experiment
	Eliminate Redundant Connections
	Reduce Parameters
	Enhance Utilization
	Integrating Multiple Rep and Edges
	Shared Mask
	Infrastructure
	Architectural Specifications

	Results
	Analysis
	Conclusions

