Task-Specific Gradient Adaptation for Few-Shot One-Class Classification

Supplementary Material

In this supplementary material, we provide the de-
tails of the experiment process, the FS-OCC episode sam-
pling technique, network backbones in Section 1, more
experiments of detailed comparisons on loss functions,
sensitivity to learning rate, boosting other optimization-
based meta-learning methods with TSGA, evaluation on
class-imbalanced query sets and cross-domain experiments
in Section 2. We also visualize the convergence curves and
normal/anomalous samples of the real-world CNC Milling
Machine dataset in Section 3.

1. Experimental Details

Experiment Settings. We outline the process for K-shot
OCC experiments as follows. The dataset for FS-OCC is
divided into three disjoint sets: meta-training set, meta-
validation set, and meta-testing set. In the meta-training
stage, we sample episodes of K-shot OCC tasks from the
meta-training set. For each task, the model learns from sup-
port samples (exclusively positive) and classifies the query
samples (positive and negative) in the inner loop. In the
outer loop, labels for all query samples in an episode are
provided, and the model is optimized using prediction and
labels. During the meta-testing stage, we randomly sampled
a large number of K -shot OCC tasks from the meta-testing
set. The pre-trained model is fine-tuned on the support set
of each task and evaluated on the query set. The final per-
formance is reported as average accuracy across all tasks.

FS-OCC Task Generation. Following the data sampling
technique proposed in OC-MAML [1], an FS-OCC task is
sampled as follows: 1) a target class is randomly selected
as the positive class, and K non-overlapping positive sam-
ples are randomly selected for the support set; 2) ) non-
overlapping positive samples are randomly selected from
the remaining positive class samples, while () samples are
randomly chosen from each of the other classes to form a
class-balanced query set. In the meta-testing stage, each
task comprises () = 30 positive and negative samples, re-
sulting in a total of 60 samples (M = 2@Q)). For the real-
world CNC Milling Machines dataset, each task contains
only @ = 1 positive and negative samples due to data lim-
itations. Notably, the query set is kept class-balanced be-
tween positive and negative classes during the meta-training
stage to capture the meta-knowledge for FS-OCC. In con-
trast, the query set may not be class-balanced during the
meta-testing stage to accommodate diverse task require-
ments. In our experiments, we maintained a class-balanced
query set during meta-testing for consistent evaluation. For
more evaluation experiments on different class-imbalance

Loss Function MIN OMN  CIFAR-FS
Cross-Entropy Loss 76.2 97.6 79.1
L1 Loss 75.56  97.72 78.38
L2 Loss 76.28  98.06 78.53

Loss Network N 77173  98.54 81.70

Table 1. Comparison of different loss functions used in the adapta-
tion process for 10-shot OCC tasks on minilmageNet (MIN), Om-
niglot (OMN), and CIFAR-FS. We highlight the best number in
bold.

rates please refer to Section 2.

Network Backbone. Conv-4 consists of 4 convolution lay-
ers followed by a fully connected layer and a softmax layer
for classification. Each block includes a 3 x 3 convolution
with 64 filters, followed by batch normalization, a ReLU
activation function, and 2 x 2 max-pooling. For time-series
data, we replace the 2D convolution layer in Conv-4 with
the 1D convolution layer. ResNet-12 [2] comprises 4 resid-
ual blocks, followed by a fully connected layer and a soft-
max layer for classification. Each residual block contains
three convolution operations with a 3 x 3 filter size. Be-
tween the convolution operations, batch normalization and
ReLU activation are applied. At the end of each residual
block, a sequence comprising batch normalization, a skip
connection, ReLU activation, and 2 x 2 max-pooling is im-
plemented. The skip connection itself includes batch nor-
malization and ReLU activation. The first residual block
uses 64 filters for each convolution operation, with each
successive residual block having double the number of fil-
ters from a preceding block.

2. More Experiments

Detailed Comparisons of Loss Functions. TSGA em-
ploys a learnable loss network during the adaptation pro-
cess, to address the misalignment between evaluation met-
rics and the requirements of OCC tasks. To evaluate its ef-
fectiveness, we compare it with additional loss functions,
e.g., L1-loss and L2-loss, as shown in Table 1. Our results
reveal that: 1) In the absence of negative samples, tradi-
tional loss functions result in performance degradation. The
commonly used loss functions for multi-classification tasks
deliver the same bad performance, indicating the misalign-
ment mentioned above exists. 2) The proposed simple yet
effective loss network N achieves significant performance
improvements by automatically learning the optimal loss
function tailored for one-class samples.



Dataset Model K=2 K =10 Learning rate 1 0.1 0.01 0.001
MetaSGD 65.0 73.6 OC-MAML 66.10 75.64 76.20 76.42
MIN OC-MetaSGD 69.6 75.8 TSGA 75.70 76.34 77.73 77.98
TSGA (Ours) 72.22 76.84
Table 4. Comparison of different learning rates used in the adapta-
MetaSGD 58.4 71.3 . ..
CIFAR-FS OC-MetaSGD 71.4 778 ﬁon Process for 10-shot QCC tasks on minilmageNet (MIN). We
ighlight the best number in bold.
TSGA (Ours) 75.98 80.48

Table 2. Comparison of MetaSGD, OC-MetaSGD, and our TSGA
for 2-shot and 10-shot OCC tasks on minilmageNet (MIN) and
CIFAR-FS. We highlight the best number in bold.

Model OMN CIFAR-FS
pos neg pos neg

OC-MAML * 97.75 98.93 81.40 76.16

TSGA (Ours) 97.91 99.04 80.64  82.99

 Our reproduction.

Table 3. Class-imbalanced query sets comparison of OC-MAML
and TSGA for 10-shot OCC tasks on Omniglot (OMN) and
CIFAR-FS. “pos” and “neg” refer to positive and negative query
sets. We highlight the best number in bold.

Boost MetaSGD with TSGA. We evaluate the univer-
sality of our method by integrating TSGA with other
optimization-based meta-learning approaches, e.g., OC-
MetaSGD, which achieves performance superior to or com-
parable with OC-MAML. In this experiment, we only in-
corporate the loss network, as MetaSGD [3] already learns
the learning rate for each parameter, which we retain. As
shown in Table 2, the results demonstrate that TSGA con-
sistently enhances OC-MetaSGD by integrating the learn-
able loss network into the adaptation process, confirming
the effectiveness and flexibility of TSGA when applied to
optimization-based meta-learning methods.

Evaluation on Class-imbalanced Query Sets. In the fields
of novelty detection and anomaly detection, class-balanced
query sets are rarely encountered in real-world scenarios.
To address this, we evaluate classification accuracy on dis-
tinct query sets containing exclusively positive or negative
samples, as shown in Table 3. The experimental results
demonstrate that TSGA outperforms the OC-MAML base-
line. By leveraging the learnable loss network, TSGA en-
hances its ability to mitigate overfitting to the few avail-
able data, which reduces the likelihood of predicting normal
samples as anomalies and overfitting to the majority class,
which could otherwise result in incorrectly classifying most
samples as normal.

Sensitivity to Learning Rate. We perform sensitivity of
hyperparameters (e.g., learning rate) experiments in Ta-
ble 4, demonstrating that TSGA maintains consistent per-

minilmageNet — CIFAR-FS

OC-MAML 66.82
TSGA 72.02

Table 5. Comparison for 10-shot cross-domain OCC tasks. Mod-
els are trained on minilmageNet and evaluated on CIFAR-FS. We
highlight the best number in bold.

Dataset K =2 K =10

minilmageNet 1.93 x 1071 1.96 x 107°
Omniglot 1.87 x 10712 8.17 x 10710
CIFAR-FS 1.26 x 10712 1.34 x 107

Table 6. Significance tests (One-way ANOVA) results (p-values)
for performance comparisons evaluated on multiple datasets and
few-shot configurations.

formance across a wide range of learning rates, with min-
imal degradation even at higher values. This highlights its
robustness. The results validate the stability and generaliz-
ability of our approach.

Cross-Domain Generalization. The distribution shift be-
tween training and test tasks is indeed a significant chal-
lenge. Our additional results on cross-domain tasks (e.g.,
minilmageNet to CIFAR-FS) in Table 5 showcase the
adaptability of TSGA, achieving a notable accuracy of
72.02% compared to OC-MAML’s 66.82%, demonstrating
its robustness under significant distribution shifts.
Significance Tests. The analysis of variance (ANOVA)
revealed statistically significant performance differences
across all datasets and few-shot configurations in Table 6.
All p-values are below the 0.05 threshold, indicating statis-
tically significant differences between models.

3. Visualization

Convergence Curves. To validate the convergence results,
we plot the changing tendency curves of training and vali-
dation accuracy and loss on the query set with the number
of epochs in our experiments, as shown in Figure | and Fig-
ure 2. The convergence tendency can be easily observed in
the figures, which show significantly more stable and faster
convergence during the optimization, substantiating the ef-
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Figure 1. Training and validation accuracy and loss tendency curves of query sets for 2-shot OCC tasks on minilmageNet (MIN), Omniglot
(OMN), and CIFAR-FS. “train” and “val” represent meta-training and meta-validation set, respectively.
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Figure 2. Training and validation accuracy and loss tendency curves of query sets for 10-shot OCC tasks on minilmageNet (MIN), Omniglot
(OMN), and CIFAR-FS. “train” and “val” represent meta-training and meta-validation set, respectively.

fectiveness of our TSGA over OC-MAML.

CNC Milling Machine Dataset. Figure 3 shows exemplary
normal and anomalous samples belonging to OP00 from the
CNC Milling Machine dataset. Due to the extreme scarcity

duration of series), it is difficult to train an OCC model.
In addition, the real-world dataset also faces various chal-

chine dataset.

of anomalous time-series data (including both quantity and

lenges, e.g., cross-machine and cross-time generalization.
Please refer to [4] for more details of the CNC Milling Ma-
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Figure 3. Exemplary normal (top) and anomalous (bottom) samples belonging to OP00 from the CNC Milling Machine dataset. (a)-(c):
x,y, z-axis of a normal sample. (d)-(f): x, y, z-axis of a anomalous sample.
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