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Supplementary Material

In this supplementary file, we provide more details of our
method and more experimental results from the following
aspects: 1) Related Work; 2) Experimental Setup; 3) Com-
parative Experiment; 4) Parameter Determination, Conver-
gence and Time Efficiency Analysis; 5) Visual Explanation;
6) Theoretical Derivation and Proof.

A. Related work

A.1. Incomplete Multi-view Multi-label Learning
Initial efforts to address incomplete data in MvMLC
involved the exploration of many traditional methods.
iMVWL [17] seamlessly integrated the learning of a shared
subspace and weak-label classifier by leveraging label cor-
relations and cross-view feature relationships. TM3L [21]
utilized subspace learning and view weighting for feature
extraction, combined with label completion and kernel ex-
treme learning machines for efficient two-step optimiza-
tion. NAIM3L [7] implicitly aligned non-aligned views in a
shared label space while incorporating the global high-rank
and local low-rank multi-label structures. However, tradi-
tional shallow models have faced challenges in effectively
capturing intricate feature semantics and fine-grained cor-
relations between labels. In contrast, recent advancements
in deep learning based methods have demonstrated excep-
tional performance. DIMC [18] employed view-specific
deep feature extraction and weighted fusion classification
modules to mitigate the negative effects of missing data.
DICNet [9] proposed deep instance-level contrastive learn-
ing to align views and utilized a missing-label indicator
matrix to filter out invalid labels. VIST [14] utilized a
view-category interactive sharing transformer, missing view
generation, and embedding consistency enhancement to
achieve efficient complementary fusion of views and labels.
MTD [11] employed a two-channel decoupling framework
to divide view features into shared and proprietary parts
and integrated random fragment masking with label-guided
graph regularization. AIMNet [10] introduced an attention-
induced missing instance imputation technique, along with
a multi-view late fusion strategy and label semantic feature
learning. SIP [12] compressed cross-view representations
to maximize shared information, while modeling label pro-
totypes in the latent space.

A.2. Learning with Noisy Labels
Previous studies have thoroughly investigated the area of
single noisy label learning. The proposed methods include

the development of robust loss functions, noise transition
matrix based approaches and label rectification with inter-
class relationships. Robust loss methods focused on design-
ing loss functions to mitigate the impact of noisy labels,
such as Mean Absolute Error (MAE) [3] and Generalized
Cross Entropy (GCE) [20]. [13] presented a loss normal-
ization technique called Active Passive Loss (APL), which
synergistically combined two robust loss functions that mu-
tually boost each other to optimize training efficacy. [15]
utilized a noise transition matrix to summarize the proba-
bilities of one class being mislabeled as another, allowing
for loss correction in the objective function, while VolMin-
Net [8] proposed an end-to-end framework without anchor
points by minimizing the volume of the transition matrix
and optimizing the cross-entropy loss. [4, 5] considered the
complementary relationships between labels by leveraging
a negative learning strategy. Class-conditional multi-label
noise has recently become a focus of exploration since re-
searchers actively pursue effective approaches. [19] devel-
oped two unbiased estimators for classifer learning under
multi-label noise, while the reliance on a linear model lim-
ited its applicability to complex multi-target tasks. UNM
[1] utilized a combination of cyclical learning rates and
loss ranking to identify noise. [16] introduced a curricu-
lum learning strategy to progressively identify true labels
in the candidate set. These methods necessitate strong de-
pendence on strategy adjustments, which leads to relatively
insufficient adaptability and stability. ENTMLC [6] lever-
aged label correlation to estimate the noise transition ma-
trix. The disjoint process of estimating the transition matrix
and training the classifier results in cumulative errors, un-
dermining its practical applicability.

B. Experiment

B.1. Experiment Setup

Datasets and Comparison Methods. In our experiments,
six public multi-view multi-label datasets are selected as
shown in Table 3. Their specific descriptions are as fol-
lows. Corel 5k is composed of 4999 image samples and
260 words, where each word can be regarded as an an-
notation or label. IAPR TC-12 comprises 19627 high-
quality natural images and each image contains 261 la-
bels, including sports, actions, animals, cities, and so on.
ESP Game is a multi-view multi-label dataset containing
20770 images with 268 corresponding tags. VOC 2007
is a widely utilized dataset for visual object detection and



Table 1. Detailed information of datasets.

View Yeast VOC 2007 Corel 5k Esp Game IAPR TC-12 MIR FLICKR
1 Genetic Expression(79) DenseHue(100) DenseHue(100) DenseHue(100) DenseHue(100) DenseHue(100)
2 Phylogenetic Profile(24) DenseSift(1000) DenseSift(1000) DenseSift(1000) DenseSift(1000) DenseSift(1000)
3 - GIST(512) GIST(512) GIST(512) GIST(512) GIST(512)
4 - HSV(4096) HSV(4096) HSV(4096) HSV(4096) HSV(4096)
5 - RGB(4096) RGB(4096) RGB(4096) RGB(4096) RGB(4096)
6 - LAB(4096) LAB(4096) LAB(4096) LAB(4096) LAB(4096)
#Label 14 20 260 268 291 38
#Instance 2417 9963 4999 20770 19627 25000

Table 2. Detailed information of comparison methods. !represent the method is able to handle the corresponding problem.

Method Source Year Multi-label Multi-view Missing-view Missing-label Noisy-label
iMVWL IJCAI 2018 ! ! ! !

TM3L ASC 2018 ! ! ! !

ENTMLC NeurIPS 2022 ! !

DICNet AAAI 2023 ! ! ! !

DIMC TNNLS 2023 ! ! ! !

AIMNet AAAI 2024 ! ! ! !

MTD NeurIPS 2024 ! ! ! !

SIP ICML 2024 ! ! ! !

DICNet DIMC MTD SIP AIMNet iMVWL TM3L NTMLCS DMMIvNL
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Figure 1. AP comparisons on six datasets with noise rate ρ varying from 10% to 40% while PER=50%.
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Figure 2. RankingLoss comparisons on six datasets with noise rate ρ varying from 10% to 40% while PER=50%.
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Figure 3. Parameter analysis of the trade-off parameters λ1 and λ2 on four datasets.

Table 3. Time efficiency during the training phase of the nine methods on three datasets. (Unit:second)
Data DICNet DIMC MTD SIP AIMNet iMVWL TM3L NTMLCS DMMIvNL
Yeast 50.57 56.70 382.17 1170.41 1317.91 3.16 1.22 124.61 104.01

Corel 5k 723.57 786.74 2776.38 1718.96 1761.04 463.64 29.66 494.54 627.34
IAPR TC-12 3494.30 3937.17 5976.48 3915.21 3495.65 948.01 422.11 1915.92 2643.06

recognition, which contains 9963 images and 20 kinds of
objects. MIR FLICKR consists of 25,000 images from the
Flickr platform, annotated with a total of 38 tags. Yeast
is a multi-label dataset containing 2417 images of yeast
cells and each image is annotated with 14 labels indicat-
ing cellular characteristics. To validate the effectiveness of

DMMIvNL, we compare it with eight state-of-the-art ap-
proaches, i.e., iMVWL [17], TM3L [21], DIMC [18], DIC-
Net [9], MTD [11], AIMNet [10] SIP [12] and ENTMLC
[6], which are discussed in detail in the Related Work sec-
tion. We also provide a comprehensive overview of their
sources and functions in Table 2.
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(a) ρ = 30%, PER=30%
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(b) ρ = 40%, PER=50%

Figure 4. Convergence analysis on six datasets under different ρ and PER.
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Figure 5. Experimental results of nine methods on Corel 5k, IAPR TC-12 and ESP Game with PER varying from 10% to 70% while
ρ = 30%.
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Figure 6. Experimental results of nine methods on VOC 2007, MIR FLICKR and Yeast with PER varying from 10% to 70% while
ρ = 30%.

Implementation Details. Referring to multi-label learn-
ing works [7, 11], we employ Hamming Loss (HL), Rank-
ing Loss (RL), OneError (OE), Coverage (Cov), Average
Precision (AP), and Area Under Curve (AUC) as six met-
rics to unify the experimental standards. Higher AP and
AUC values indicate better performance, while lower HL,
RL, OE, and Cov values are preferred. Their evaluation
contents are described below: 1) ACC measures the pro-
portion of correctly predicted labels across all samples. 2)
RL evaluates the accuracy of the model’s ranking of pre-
dicted labels compared to true labels. 3) AP computes the
area under the precision-recall curve, indicating the average
precision achieved across all recall levels. 4) AUC quan-
tifies the probability that a randomly selected positive in-
stance is ranked higher by the model than a randomly se-
lected negative instance across all possible threshold val-
ues. 5) OE evaluates whether the top-ranked label predicted
by the model is incorrect. 6) Cov computes the number of

labels the model needs to traverse to cover all true labels, re-
flecting the efficiency of the model’s predicted label range.
In our experiments, the two parameters λ1 and λ2 are se-
lected in the range of {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}.
Adam optimizer with the initial learning rate of 0.0001 is
used for optimization of all datasets. All methods use the
same dataset partition when conducting experiments, while
the locations of view missing and label flipping are recorded
and kept consistent.

B.2. Experiment Results

Comparative Experiment. To validate that our method
can adapt to varying degrees of missing views and noisy
labels, we conduct comparative experiments with ρ ranging
from {10%, 15%, 20%, 25%, 30%, 35%, 40%} and PER se-
lected from {10%, 30%, 50%, 70%}. Fig. 1 and 2 show AP
and RankingLoss comparisons when noise rate increases,
while Fig. 5 and 6 displays the metric distribution when



PER changes. It can be observed that regardless of the lev-
els of view missing and noise rate, our method always oc-
cupies the top position in the line charts and the outermost
edge of the radar charts, which indicates that DMMIvNL
consistently outperforms the other eight methods. The re-
sults across all datasets and cases strongly validate that our
method is both effective and robust for simultaneously han-
dling insufficient features and incorrect annotations.
Parameter Determination, Convergence, and Time Ef-
ficiency Analysis. The parameters λ1 and λ2 are used to
balance the roles of LID and LR when handling noisy la-
bels. From the heatmap shown in Fig. 3, the performance
of DMMIvNL exhibits variability under different parameter
setting. Besides, the optimal results are typically achieved
when λ1 falls within the range of (0.001, 0.005) and λ2

within the range of (0.5, 1). Moreover, we present the loss
variation trend under different ρ and PER in Fig. 4. The
results show that our DMMIvNL demonstrates good con-
vergence and gradually approaches the optimal network pa-
rameters under any conditions. Furthermore, the running
times of all algorithms are reported in Table 3. From a time
comparison perspective, our method is less time-consuming
than most deep learning based methods. The reason may be
that our main effort lies in developing loss functions with
theoretical guarantees to adaptively address the dual issues
of view missing and label noise. Thus, the constructed net-
works do not have a complex design and its structure pri-
marily consists of fully connected layers. In conclusion, our
method not only ensures stable performance but also comes
with a resource expenditure that remains tolerable.

C. Visual Explanation
Visual of the Volume Minimization Network. To facili-
tate an intuitive understanding of the volume minimization
network, we present visualizations in both the 2D plane and
high-dimensional space. From the Fig. 7(a) and 8(a), we
can see that in the sufficiently scattered assumption, con-
dition 1 establishes a lower bound for the scatter of class-
posterior probability points, i.e, there must exist a cone
formed by a set of sample points that contains R (inner
circle or sphere). Condition 2 imposes an upper limit on
the dispersion of sample points, where they are enclosed by
a cone formed by the columns of a permutation matrix Q.
The vertices of the cone are the anchor points with a prob-
ability of 1 belonging to a specific class. In the Fig. 7(b),
the region encompassed by red lines is cone{Hj}, which
satisfies R ⊆ cone{Hj} ⊆ cone{Q}. When the suffi-
ciently scattered assumption is invalid shown in Fig. 7(c),
the class-posterior probability points do not cover a suffi-
ciently large area to provide adequate information for clas-
sification, making it difficult to distinguish between the cat-
egories. When the volume of the transition matrix for each
category is independently optimized, as shown in Fig. 7(d)

and 7(e), we can simultaneously obtain the optimal transi-
tion matrices and classifier, with the same concept conveyed
in Fig. 8(b). However, due to the inherent label correlations
in multi-label data, there is mutual influence among classes,
which shows that the optimization process of each label’s
transition matrix is constrained by other labels.

Dominated by inter-label relationships, similar with [6],
noisy multi-label data encompasses the noisy inner-class
and inter-class transition matrices :

M ij =

(
P (Ȳ i = 0 | Y j = 0) P (Ȳ i = 0 | Y j = 1)
P (Ȳ i = 1 | Y j = 0) P (Ȳ i = 1 | Y j = 1)

)
,

where M ij represents the noise transition matrix from label
j to label i, with its elements primarily determined by the
correlation between the two labels. If two labels like ”fish”
and ”water” are strongly correlated, then since P (Ȳ i = 1 |
Y j = 1) = P (Ȳ i = 1;Y j = 1)/P (Y j = 1), a larger
P (Ȳ i = 1;Y j = 1) will have a considerable impact on
P (Ȳ i = 1 | Y j = 1). Moreover, through computations
involving co-occurrence probabilities and conditional prob-
abilities, we can derive a set of equations that establish the
constraints between the inter-class transition matrices and
the intra-class transition matrices:

P
(
Ȳ j = 0, Ȳ i = 0

)
= P (Y j = 0)T j

00P (Ȳ i = 0|Y j = 0)

+ P (Y j = 1)T j
01P (Ȳ i = 0|Y j = 1)

P
(
Ȳ j = 0, Ȳ i = 1

)
= P (Y j = 0)T j

00P (Ȳ i = 1|Y j = 0)

+ P (Y j = 1)T j
01P (Ȳ i = 1|Y j = 1)

P
(
Ȳ j = 1, Ȳ i = 0

)
= P (Y j = 0)T j

10P (Ȳ i = 0|Y j = 0)

+ P (Y j = 1)T j
11P (Ȳ i = 0|Y j = 1)

P
(
Ȳ j = 1, Ȳ i = 1

)
= P (Y j = 0)T j

10P (Ȳ i = 1|Y j = 0)

+ P (Y j = 1)T j
11P (Ȳ i = 1|Y j = 1)

,

where the elements of the intra-class transition matrix T j

are jointly governed by the inter-class transition matrices
M ij and M ji. Therefore, the transition matrix for each
category itself cannot be optimized completely indepen-
dently, as it is influenced by the associated labels. As shown
in Fig. 7(f), 7(g) and 8(c), label interactions compress the
class-posterior probabilities of certain labels, thereby vio-
lating the sufficiently scattered assumption. As a result,
minimizing the transition matrix volume alone is unlikely to
function effectively in practice, which promotes the design
of our cycle-consistency estimation framework. We lever-
age the volume maximization of the clean-class posterior to
assist in the volume minimization of the transition matrix,
which effectively avoids the estimation bias introduced by
single-objective decision-making. Besides, by integrating
forward and backward feedback mechanisms, it enhances
noise identification robustness without relying on any prior
assumptions.
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Figure 7. Illustration of the volume minimization network in the 2D plane. The black dots are class-posterior probability points; the inner
circle is R{v ∈ R2 | v⊤1 ≥ ∥v∥2} ⊆ cone{Hj}; the vertices of the triangle are composed of anchor points; the region encompassed
by red lines is cone{Hj}. (a) identifies the transition matrix through anchor points; (b) shows the sufficiently scattered assumption; (c)
highlights the failure of the sufficiently scattered assumption; (d) demonstrates the progressive optimization leading to the minimal volume
transition matrix; (e) illustrates the state of independent optimization for the transition matrix of each label; (f) displays the mutual influence
among classes driven by label correlations; (g) illustrates the failure of the sufficiently scattered assumption during the optimization process
for T 1 and TC due to the influence of T 2.

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝑻𝑻𝟏𝟏

𝑻𝑻𝟐𝟐
𝑻𝑻𝑪𝑪

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝑻𝑻𝟏𝟏

𝑻𝑻𝟐𝟐 𝑻𝑻𝑪𝑪

(a) (b) (c)

anchor point
class-posterior probability point

Figure 8. Illustration of the volume minimization network in the high-dimensional space. The cube is formed by anchor points; the inner
sphere is R{v ∈ R2 | v⊤1 ≥ ∥v∥2} ⊆ cone{Hj}; the region fromed by black points is cone{Hj}. (a) shows the sufficiently scattered
assumption; (b) illustrates the state of independent optimization for the transition matrix of each label; (c) displays the mutual influence
among classes driven by label correlations and the failure of the sufficiently scattered assumption during the optimization process after
label interactions.



D. Theoretical Derivation and Proof

D.1. Complete Derivation of Information Bottleneck Theory Based Model

In this section, we give a detailed derivation about the upper bound of the problem (1):

max
1

V

V∑
v=1

V∑
v∗ ̸=v

(I(zv∗
|xv∗

; zv|xv)− I(sv
∗
|xv∗

; sv|xv))− β

V

V∑
v=1

I(zv|xv; sv|xv). (1)

For the problem (1), we have the following equation by utilizing the definition of mutual information:

I(zv∗
|xv∗

; zv|xv) =

∫ ∫
p(zv|xv, zv∗

|xv∗
) log

p(zv|xv, zv∗ |xv∗
)

p(zv∗ |xv∗)p(zv|xv)
dzv∗

dzv. (2)

Considering p(zv∗ |xv∗
, zv|xv) = p(zv|xv/zv∗ |xv∗

)p(zv∗ |xv∗
), we have

I(zv∗
|xv∗

; zv|xv) =

∫ ∫
p(zv|xv/zv∗

|xv∗
)p(zv∗

|xv∗
) log

p(zv|xv/zv∗ |xv∗
)p(zv∗ |xv∗

)

p(zv∗ |xv∗)p(zv/xv)
dzv∗

dzv

=

∫ ∫
p(zv∗

|xv∗
/zv|xv)p(zv∗

|xv∗
) log p(zv|xv/zv∗

|xv∗
)dzv∗

dzv

+

∫ ∫
p(zv|xv/zv∗

|xv∗
)p(zv|xv) log

1

p(zv|xv)
dzv∗

dzv.

(3)

Since H(zv|xv) = −
∫
p(zv|xv) log p(zv|xv)dzv ≥ 0, we have

I(zv∗
|xv∗

; zv|xv) =

∫ ∫
p(zv|xv/zv∗

|xv∗
)p(zv∗

|xv∗
) log p(zv|xv/zv∗

|xv∗
)dzv∗

dzv

+

∫
p(zv∗

|xv∗
/zv|xv)H(zv|xv)dzv∗

≥
∫ ∫

p(zv|xv/zv∗
|xv∗

)p(zv∗
|xv∗

) log p(zv|xv/zv∗
|xv∗

)dzv∗
dzv

=

∫ ∫
p(zv|xv/zv∗

|xv∗
)p(zv∗

|xv∗
) log q(zv|zv∗

)dzv∗
dzv

+

∫ ∫
p(zv|xv/zv∗

|xv∗
)p(zv∗

|xv∗
) log

p(zv|xv/zv∗ |xv∗
)

q(zv|zv∗)
dzv∗

dzv.

(4)

Based on the definition of the Kullback-Leibler divergence, we can get

DKL(p(z
v|xv/zv∗

|xv∗
)∥q(zv|zv∗

)) =

∫
p(zv|xv/zv∗

|xv∗
) log

p(zv|xv/zv∗ |xv∗
)

q(zv|zv∗)
dzv. (5)

Since DKL(p(z
v|xv/zv∗ |xv∗

)∥q(zv|zv∗
)) ≥ 0, we have

I(zv∗
|xv∗

; zv|xv) ≥
∫ ∫

p(zv|xv/zv∗
|xv∗

)p(zv∗
|xv∗

) log q(zv|zv∗
)dzv∗

dzv

+

∫
p(zv∗

|xv∗
)DKL(p(z

v|xv/zv∗
|xv∗

)∥q(zv|zv∗
))dzv∗

≥
∫ ∫

p(zv|xv/zv∗
|xv∗

)p(zv∗
|xv∗

) log q(zv|zv∗
)dzv∗

dzv

=

∫ ∫
p(zv|xv, zv∗

|xv∗
) log q(zv|zv∗

)dzv∗
dzv.

(6)



For the second term I(sv
∗ |xv∗

; sv|xv), we start from the definition and obtain the following upper bound:

I(sv
∗
|xv∗

; sv|xv) =

∫ ∫
p(sv

∗
|xv∗

; sv|xv) log
p(sv

∗ |xv∗
; sv|xv)

p(sv∗ |xv∗)p(sv|xv)
dsv

∗
dsv

=

∫ ∫
p(sv

∗
|xv∗

; sv|xv) log
p(sv|xv/sv

∗ |xv∗
)

p(sv|xv)
dsv

∗
dsv

=

∫ ∫
p(sv

∗
|xv∗

; sv|xv) log
p(sv|xv/sv

∗ |xv∗
)

q(sv|sv∗)
dsv

∗
dsv

+

∫ ∫
p(sv

∗
|xv∗

; sv|xv) log
q(sv|sv∗

)

p(sv|xv)
dsv

∗
dsv

=

∫ ∫
p(sv

∗
|xv∗

; sv|xv) log
p(sv|xv/sv

∗ |xv∗
)

q(sv|sv∗)
dsv

∗
dsv

−
∫

p(sv
∗
|xv∗

/sv|xv)

∫
p(sv|xv) log

p(sv|xv)

q(sv|sv∗)
dsv

∗
dsv

=

∫ ∫
p(sv

∗
|xv∗

; sv|xv) log
p(sv|xv/sv

∗ |xv∗
)

q(sv|sv∗)
dsv

∗
dsv

−
∫

p(sv
∗
|xv∗

/sv|xv)DKL(p(s
v|xv)∥q(sv|sv

∗
))dsv

∗

≤
∫ ∫

p(sv
∗
|xv∗

; sv|xv) log
p(sv|xv/sv

∗ |xv∗
)

q(sv|sv∗)
dsv

∗
dsv

=

∫ ∫
p(sv

∗
|xv∗

; sv|xv) log
p(sv

∗ |xv∗
; sv|xv)

p(sv∗ |xv∗)q(sv|sv∗)
dsv

∗
dsv

= DKL(p(s
v∗
|xv∗

; sv|xv)∥p(sv
∗
|xv∗

)q(sv|sv
∗
)).

(7)

Similarly, we can derive the upper bound for the last term, which exhibit structure analogous to that of Eq. (7):

I(zv|xv; sv|xv) ≤ DKL(p(z
v|xv; sv|xv)∥p(sv|xv)q(zv|sv)). (8)

By combining Eqs. (6), (7), and (8), the objective of our method is naturally transformed into minimizing its upper bound:

LIB =
1

V

V∑
v=1

V∑
v∗ ̸=v

[
−D†

KL(p(z
v|xv, zv∗

|xv∗
)∥q(zv|zv∗

))

+ DKL(p(s
v∗
|xv∗

, sv|xv)∥p(sv
∗
|xv∗

)q(sv|sv
∗
))
]

+
β

V

V∑
v=1

DKL(p(z
v|xv, sv|xv)∥p(sv|xv)q(zv|sv)).

(9)

Each term in Eq. (9) denoted as D†(zv,zv∗
)

KL , D(sv,sv∗
)

KL and D
(sv,zv)
KL , then we can obtain

LIB =
1

V

V∑
v=1

V∑
v∗ ̸=v

(−D
†(zv,zv∗

)
KL +D

(sv,sv∗
)

KL ) +
β

V

V∑
v=1

D
(sv,zv)
KL . (10)

D.2. Proof of the Theorem 1
The sufficiently scattered assumption and following lemmas are essential prerequisite for our proof.

Definition 1. (Sufficiently Scattered [2]). The clean class-posterior probability P (Y j |X) is said to be sufficiently scattered
only if there exists a feature set H = {x̂1, . . . , x̂m} such that the matrix Hj = [P (Y j |X = x̂1), . . . , P (Y j |X = x̂m)]
satisfies the following conditions: 1) R ⊆ cone{Hj}, where R = {v ∈ R2 | v⊤1 ≥ ∥v∥2} and cone{Hj} denotes the
convex cone formed by columns of Hj . 2) cone{Hj} ⊈ cone{Q}, where Q ∈ R2×2 is any unitary matrix that is not a
permutation matrix.



Lemma 1. If K1 and K2 are convex cones, and K1 ∈ K2, then dual{K2} ∈ dual{K1}.

Lemma 2. If A is an invertible matrix, then dual(A) = cone(A−⊤).

Our goal is to demonstrate that solving the following problem can simultaneously yield the optimal transition matrix for
each category and classifier: 

min
T̂ j

C∑
j=1

vol(T̂ j)

s.t. T̂ j

[
hθ(x̂)j

1− hθ(x̂)j

]
= P (Ȳ j |X = x̂),

(11)

where vol(T̂ j) denotes a measure to the volume of Sim{T̂ j} and we choose a common choice that vol(T̂ j) = det(T̂ j).
Then under the condition that the clean class-posterior satisfies the sufficiently scattered assumption, we can theoretically
establish addressing the problem (11) will drive T̂ j to converge to T j , while hθ(x̂) accurately approximates P (Y |X = x̂):

Theorem 1. If each P (Y j |X) is sufficiently scattered, then T j
⋆ = T j and (hθ⋆(x̂)j , 1 − hθ⋆(x̂)j)

T = P (Y j |X = x̂)
(j = 1, 2 · · ·C) must hold, where (T 1

⋆ ,T
2
⋆ , · · · ,TC

⋆ , θ⋆) are the optimal solutions of the problem (11).

Proof. (T̂ 1
⋆ , T̂

2
⋆ , · · · , T̂C

⋆ , θ⋆) is denoted as a feasible solution of the problem (11), i.e.,

T̂ j
⋆ (hθ⋆(x̂)j , 1− hθ⋆(x̂)j)

T = T jP (Y j |X) = P (Ȳ j |X). (12)

According to the sufficiently scattered assumption, we have the matrix Hj = [P (Y j |X = x̂1), . . . , P (Y j |X = x̂m)]
defined on the set H = {x̂1, . . . , x̂m}. Based on the output of the classifier, the matrix Hj is expressed as below:

Hj
⋆ =

 hθ⋆ (x̂1)j . . . hθ⋆ (x̂m)j

1− hθ⋆ (x̂1)j . . . 1− hθ⋆ (x̂m)j

 . (13)

It follows that T j
⋆H

j
⋆ = T jHj holds. Since P (Ȳ j = 0 | Y j = 1) + P (Ȳ j = 1 | Y j = 0) < 1, both T j

⋆ and T j have

full rank. Therefore, there exists an invertible matrix A ∈ R2×2 such that T j
⋆ = T jA−⊤, where A−⊤ = HjHj

⋆
†

and
Hj

⋆
†
= Hj

⋆
⊤
(Hj

⋆H
j
⋆
⊤
)−1. Since 1⊤Hj = 1⊤ and 1⊤Hj

⋆ = 1⊤, we can obtain

1⊤A−⊤ = 1⊤HjHj
⋆

†
= 1⊤Hj

⋆

†
= 1⊤Hj

⋆H
j
⋆

†
= 1⊤. (14)

Let v ∈ cone{Hj}, i.e., v = Hju, where u ≥ 0 and u ∈ Rm×1. Since Hj = A−⊤Hj
⋆ , v can be expressed as v = A−⊤ũ

where ũ = Hj
⋆u ≥ 0, which implies that v ∈ cone{A−⊤}. Thus, based on the recursive relationship, we can deduce that

cone{Hj} ∈ cone{A−⊤}.
By applying condition 1 of the sufficiently scattered assumption, we obtain that R ⊆ cone{Hj} ⊆ cone{A−⊤}, where

R = {v ∈ R2 | v⊤1 ≥
√
C − 1∥v∥2}. Using Lemmas 1 and 2, we have cone{A} ⊆ dual{R}, where dual{R} = {v ∈

R2|∥v∥2 ≤ 1⊤v} is the dual cone of R. Then we can derive the following inequalities:

|det(A)|
1⃝
≤

2∏
i=1

∥A:,i∥2
2⃝
≤

2∏
i=1

1⊤A:,i

3⃝
≤ (

∑2
i=1 1

⊤A:,i

2
)2 = (

1⊤A1

2
)2

4⃝
= 1, (15)

where 1⃝ is by the Hadamard’s inequality, 2⃝ is by cone{A} ⊆ dual{R}, 3⃝ is by the arithmetic-geometric mean inequality,
4⃝ is by Eq. (14). Since |det(A)|−1 = |det(A−⊤)| and det(T j

⋆ ) = det(T j)|det(A)|−1, we can get det(T j
⋆ ) ≥ det(T j).

In the original optimization problem (11), when minT̂ j

∑
j vol(T̂

j) achieves its minimum, each vol(T j) simultaneously
reaches its individual minimum. Leveraging the relationship det(T j) = vol(T j), it follows that det(T j

⋆ ) ≤ det(T j).
Therefore, we can get the conclusion:

det(T j
⋆ ) = det(T j). (16)

The equality in 1⃝ holds only if A is a column-orthogonal matrix with each column having the same magnitude. Conse-
quently, A−⊤ also satisfies this condition. The elements of A−⊤ are denoted as a00, a01, a10, and a11. Combining with Eq.



(14), the following system of equations can be derived:
a200 + a210 = a201 + a211
a00a01 + a10a11 = 0

a00 + a10 = a01 + a11 = 1

. (17)

Therefore, we can deduce that A is an identity matrix and T j
⋆ = T j , which also makes cone{Hj} ∈ cone{A−⊤} satisfy

the condition 2 of the sufficiently scattered assumption. Then from Eq. (12), we derive that (hθ⋆(x̂)j , 1 − hθ⋆(x̂)j)
T =

P (Y j |X). Finally, (T j
⋆ , (hθ⋆(x̂)j , 1 − hθ⋆(x̂)j)

T ) (j = 1, 2, · · · , C) are proved as the unique optimal solutions of the
problem (11).
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