
Towards Smart Point-and-Shoot Photography

Supplementary Material

In this document, we provide more details as supplemen-
tary materials to our main submission. We first present the
related work. We present the mathematical details of view
generation from equirectangular panoramas to perspective
views in our proposed Panorama-based Composition Ad-
justment Recommendation dataset (PCARD) in Sec. 2, fol-
lowed by the definition and calculation of spherical over-
lap and spherical IoU metrics in Sec. 3. In Sec. 4, we pro-
vide comprehensive statistical information of our proposed
PCARD, including its taxonomic structure and detailed la-
bel analysis. Sec. 5 presents extensive ablation studies on
our CLIP-based Composition Quality Assessment (CCQA)
model. Finally, in Sec. 6, we describe our subjective evalua-
tion setup and provide additional qualitative results demon-
strating the effectiveness of our approach across diverse sce-
narios.

1. Related Work

The image cropping (ICDB) dataset [9] and the human crop
(HCDB) dataset [3] contain a small number of images that
were manually annotated with the best cropping boxes by
multiple professional photographers. Since the best crop-
ping generated in this manner relies entirely on the anno-
tators’ experience without explicit constraints, Christensen
and Vartakavi [2] constructed an aspect ratio-aware image
cropping (GNMC) dataset, where each image includes op-
timal cropping annotations in different aspect ratios (16:9,
3:4, 4:3, 2:2, 1:1).The subject-aware composition (SACD)
dataset [10] contains 2777 images and more than 24,000
candidate views, where each image is annotated with 8 op-
timal cropping boxes. However, the limited number of an-
notated crops is not conducive to the training of a robust
image composition model. Therefore, some other datasets
[1, 5, 7, 10–12] were created with dense annotations. The
primary paradigm of creating these datasets is first generat-
ing a large number of candidate views, followed by experts
annotating them using a pair-wise ranking strategy [1, 7] or
a direct scoring approach [5, 11, 12]. The flicker-cropping
(FCDB) dataset [1] contains 1743 images and 31430 anno-
tated pairs of candidate views while the comparative photo
composition (CPC) dataset [7] contains 10800 images, with
24 candidate views for each image and generates more than
1 million view pairs. The labeled cropping windows all
have high aesthetic value with a certain focused subject.
Different from the pair-wise strategy, the grid-anchor-based
image cropping (GAICv1, GAICv2) dataset [11, 12] pro-
vides an average of 86 fixed candidate views for each image,
where each candidate view is assigned an aesthetic qual-

Dataset Year Label Scenes
Candidate

Views
Camera

Pose
ICDB[9] 2013 Best 950 1 N/A
HCDB[3] 2014 Best 500 1 N/A
GNMC[2] 2022 Best 10000 5 N/A
SACD[10] 2023 Best 2777 8 N/A
FCDB[1] 2017 Rank 1536 18 N/A
CPC[7] 2018 Rank 10800 24 N/A

GAICv1[11] 2019 Score 1236 86 N/A
GAICv2[12] 2020 Score 3336 86 N/A

UGCrop5K[5] 2024 Score 5000 90 N/A

Table 1. Image Composition datasets.
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Figure 1. View generation. An equirectangular (ERP) image
can be mapped to a perspective view using camera field of view
(fovx, fovy) and viewing direction (θ0,0, φ0,0) parameters.

ity score. The user-generated content crop (UGCrop5K)
dataset [5] consists of 45000 exhaustively annotated can-
didate views on 5K images.

2. View Generation
As shown in Figure 1, we can generate a perspective view
I from an Equirectangular(ERP) image given two key pa-
rameters: (1) the camera field of view (fovx, fovy), and (2)
the viewing direction (θ0,0, φ0,0) that defines the viewpoint
E in the spherical domain S2. The generated view I has a
spatial resolution of h × w in the 2D plane. Given a pixel
located at (i, j) (i ∈ [1, w], j ∈ [1, h]) in the view I , we
transform it into a 3D point (xi,j , yi,j , zi,j) in the camera
coordinate system through inverse perspective projection: xi,j

yi,j
zi,j
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(c) The average consistency of the suggestion labels.

(b) Distribution of Suggestion Labels. 

(d) Distribution of Adjustment Labels based on CCQA. 

(a) Taxonomic structure.

Figure 2. Statistics of the proposed PCARD dataset.

where fx and fy are the horizontal and the vertical focal
lengths. Following [13], we standardize all views with a
vertical FOV of fovy = 60◦ and a fixed spatial resolution
of h × w = 768 × 1024. The principal point (i0, j0) rep-
resents the pixel coordinates of the center point on the view
I , where i0 = (w − 1)/2, j0 = (h− 1)/2.

To align the camera coordinate system (x, y, z) with the
world coordinate system (x̂, ŷ, ẑ), we apply two successive
rotations:

 x̂i,j

ŷi,j
ẑi,j

 = Ry (θ0,0)Rx (φ0,0)

 xi,j

yi,j
zi,j

 (3)

where Ry(θ0,0) represents the rotation matrix of angle
θ0,0 along y-axis, Rx(φ0,0) represents the rotation ma-
trix of angle φ0,0 along x-axis. The rotated coordinates
(x̂i,j , ŷi,j , ẑi,j) are then converted to spherical coordinates

(longitude θi,j and latitude φi,j ):

{
θi,j = arctan

(
x̂i,j

ẑi,j

)
φi.j = arcsin (ŷi,j)

(4)

Finally, we map these spherical coordinates to pixel co-
ordinates (ui,j , vi,j) in the ERP image domain with width
W and height H:

{
ui,j =

(
θi,j
2π + 1

2

)
W

vi,j =
(
−φi,j

π + 1
2

)
H

(5)

Through the series of coordinate transformations, we es-
tablish a complete mapping from the source ERP image to
the target perspective view, enabling accurate view genera-
tion from any given viewpoint.



3. Spherical overlap and Spherical IoU
Given a spherical rectangle Si(θi, φi, αi, βi), the area of the
shape is A(·):

A (Si) = 4 arccos

(
− sin

αi

2
sin

βi

2

)
− 2π, for i ∈ {1, 2}

(6)
where θi and φi denote the polar angle, αi and βi represent
the horizontal and vertical field of view. The overlapping
region between two spherical rectangles is most likely not a
standard spherical rectangle but rather an irregular spherical
polygon, making the calculation of Area A(Si ∩ Sj) quite
complex. However, we can utilize the fact that the bound-
aries of the two spherical rectangles are great circle arcs and
can be used to calculate the area of the overlapping region
[8]:

A (Si ∩ Sj) =

n∑
i=1

ωi − (n− 2)π (7)

where n is the number of sides of the spherical polygon
defined by the intersection region, ωi is the angle of the
spherical polygon, which is the angle between the planes
on the adjacent boundaries.

Therefore,

SphOverlap (Sadj , Sinit) =
A(Sadj ∩ Sinit )

A(Sinit )
(8)

SphIoU (Sadj, Sinit) =
A(Sadj ∩ Sinit)

A(Sadj ) +A(Sadj )−A(Sadj ∩ Sinit)
(9)

where Sadj and Sinit represent the spherical rectangles cor-
responding to Ii

adj and Ii
init in the 360◦ images respec-

tively.

4. Statistics of the PACRD
Taxonomic structure. To better explore the aesthetic di-
versity of the PCARD, we manually divided it into 12 cat-
egories, namely Street, Building, Sun, Snow, Sea, Lake,
Beach, Desert, Mountain, Bridge, Nature, and Forest, as
shown in Figure 2 (a). It is worth noting that, unlike com-
mon image composition datasets with single semantic in-
formation, these categories are not mutually exclusive, as
individual images may contain multiple semantic elements.
This is because the images in PCARD have richer semantic
information, with overlaps between categories.

Label analysis. First, to evaluate the reliability and con-
sistency of our pseudo-labeling method, we conducted the
comparative analysis using four composition scoring mod-
els: our proposed CCQA model and three representative
models (GAICv2* [11], TransView* [4], and SFRC* [6])1

following the main paper. These models were selected for
1*Exclude the RoDAlign branch for a fair comparison.

No. WS FMR LP Acc5 Acc10 Accw5 Accw10
1 ✓ 49.4 65.5 34.7 49.2
2 ✓ 48.3 64.7 34 43
3 ✓ ✓ 49.4 65.8 35 49.4
4 ✓ ✓ 51.5 68 36.4 51.5
5 ✓ ✓ 50.4 66.7 35.7 50.3
6 ✓ ✓ ✓ 56.1 72.6 39.8 55.5

Table 2. Ablation study of different components in CCQA. “LP”,
“FMR”, and “WS” are short for Learnable prompt, Feature mixers
and regression, and Weighted summation respectively.

No. L1 L2 L3 Acc5 Acc10 Accw5 Accw10
1 ✓ 34.8 56.6 23.1 39.1
2 ✓ 45.5 63.8 30.1 46.1
3 ✓ ✓ 41.1 60.2 27.5 43.1
4 ✓ ✓ 50.1 68.5 33.7 50.7
5 ✓ ✓ 48.8 65.4 34.3 50.7
6 ✓ ✓ ✓ 56.1 72.6 39.8 55.5

Table 3. Ablation study of different loss functions in CCQA.

their diverse technical approaches, ranging from RoIAlign
and RoDAlign feature fusion, visual elements dependencies
modeling to spatial-aware feature and transductive learn-
ing. We then analyzed the distribution of the suggested la-
bels yi

s generated by these four composition scoring mod-
els under the pseudo-labeling method based on different
score thresholds. The visualization results are shown in Fig-
ure 2 (b). It can be observed that if the score thresholds
are set consistently, the distributions of the suggested labels
generated based on different scoring models exhibit simi-
lar patterns, indicating the stability of our pseudo-labeling
approach. Furthermore, we calculated the consistency of
suggestion labels generated by CCQA and three other mod-
els, as shown in Figure 2 (c). The average consistency of
suggestion labels reaches over 70%. This high level of
agreement among different models demonstrates both the
robustness of our proposed pseudo-label generation method
and the reliability of labels generated based on the CCQA
model. In particular, considering both the balanced distribu-
tion and average consistency of suggestion labels, we chose
N = 25% in practice. Figure 2 (d) show the distribution of
adjustment labels yi

a based on CCQA while N = 25%. If
the composition can be improved, the distribution of adjust-
ment labels aligns with the eight-neighborhood candidate
adjustment space defined by the dataset with a step size of
∆θ = ∆φ = 5◦, indicating that our proposed pseudo-label
generation method and CCQA model can be reasonably ap-
plied to generate adjustment labels without missing poten-
tial adjustment spaces.
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Figure 3. Illustration of the annotation toolbox.

5. Ablation study of the CCQA

To comprehensively evaluate our proposed CLIP-based
Composition Quality Assessment model (CCQA) and
demonstrate the reliability of the scoring order in our
PCARD dataset, we conduct extensive ablation studies to
analyze the contribution of each component and loss func-
tion. The experiments are performed by training on the
GAICv2 dataset [12] and testing generalization on the un-
seen CPC dataset [7].

Model architecture.We first investigate the impact of
different architectural components in CCQA. As shown
in Table 2, we systematically evaluate three key compo-
nents: Learnable prompt (LP), Feature mixers and regres-
sion (FMR), and Weighted summation (WS). The baseline
model with only FMR achieves Acc5 of 48.3%, Acc10 of
64.7%, Accw5 of 34% and Accw10 of 43%. Adding WS
(No.1) or combining it with FMR (No.3) shows incremental
improvements. The introduction of Learnable prompt (LP)
significantly enhances performance, particularly when com-
bined with other components. The full model incorporating
all three components (No.6) achieves the best performance
across all metrics, with Acc5 of 56.1%, Acc10 of 72.6%,
Accw5 of 39.8% and Accw10 of 55.5% on unseen data.

Loss function. We further examine the effectiveness of
our loss function design, particularly focusing on the inter-
mediate feature constraint L3. As shown in Table 3, we
compare our complete CCQA model with a variant without
the L3 loss term. The baseline CCQA without L3 achieves
Acc5 of 48.8%, Acc10 of 65.4%, Accw5 of 34.3% and Accw10
of 49% on unseen data. By incorporating L3, our com-
plete model shows substantial improvements across all met-
rics. These results demonstrate that constraining intermedi-
ate features through L3 is crucial for improving the gener-
alization capability of CCQA.

Figure 4. Examples of composition improvement trajectory: 3
steps.

Figure 5. Examples of composition improvement trajectory: 4
steps.

6. Subjective Evaluation
6.1. Annotation box

The interface of our annotation toolbox for user studies is
shown in Figure 3. The annotation toolbox was specifically
designed to facilitate efficient and unbiased comparison of
image compositions. The tool presents two images side-by-
side for direct comparison, ensuring consistent evaluation
conditions across all participants.

6.2. More qualitative results

This section shows more qualitative results.
The sequence of operation of SPAS is as follows: (i) De-

cide if the current composition can be improved by perform-
ing the suggestion prediction. (ii) If the suggestion predictor
outputs 0, then the user will take a photo and the process is
complete. (iii) If the suggestion predictor outputs 1, the sys-
tem predicts the adjustment angles and the user follows the
instruction to adjust the camera pose. (iv) Go to (i) and the
process continues.Depending on the scene and initial view,
it takes different number of steps, typically 3 to 6 in our
data. Figure 4 and Figure 5 show examples of typical tra-
jectories of improvement.

To comprehensively evaluate our CPAM model’s per-



Figure 6. Examples of well-composed images requiring no adjust-
ment.

formance, we present two sets of qualitative results that
demonstrate its intelligent decision-making capabilities
across different scenarios. As shown in Figure 6, we
show cases where the source compositions are already well-
crafted. These images, spanning various scenes including
coastal landscapes, mountain views, and rural paths. Fig-
ure 7 presents paired examples of images requiring com-
positional improvements, along with CPAM’s adjustment
results. Each pair consists of the source image and our
model’s optimized view. The adjustments demonstrate
CPAM’s effectiveness in various challenging scenarios: re-
framing landscapes to better emphasize focal points, opti-
mizing horizon placement in outdoor scenes, and improving
the balance of architectural elements. Notably, the adjust-
ments are subtle yet meaningful, showing CPAM’s ability
to make refined modifications while preserving the essen-
tial character of each scene.These results collectively high-
light CPAM’s dual capability: maintaining already-optimal
compositions while making appropriate adjustments when
needed. This discriminative behavior is crucial for practi-
cal applications, where Smart Point-and-Shoot (SPAS) sys-
tems must be both effective and judicious in their interven-
tions. The diverse range of scenarios in both figures also
demonstrates the model’s robust generalization across dif-
ferent photographic contexts and composition challenges.
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Figure 7. Demonstration of CPAM’s adjustment capabilities: Before-and-after comparison on images requiring composition optimization.
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