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1. Implementation Details
The object images and uncertainty maps for pose es-

timation are rendered using the graphics pipeline [2] and
Kornia [7], and mesh rasterization for uncertainty model-
ing is performed with PyTorch3D [1]. For the pose re-
finement and selection modules described in Sec. 3.3 of
the main paper, we utilize the publicly available check-
points from [10]. Note that this version was not trained
on diffusion-augmented data, which may lead to perfor-
mance degradation compared to the expected results re-
ported in [10]. In this work, the neural Signed Distance
Field (SDF) is trained using a simplified version of multi-
resolution hash encoding [4], leveraging the CUDA imple-
mentation from [9]. The encoding is structured with 4 lev-
els, each having feature vectors ranging from 16 to 128 in
size and a feature dimension of 2. The hash table size is set
to 222. Each training iteration processes a ray batch of 2048,
with a truncation distance λ of 1 cm. Every SDF is trained
for 500 steps, which completes within seconds. The geom-
etry network Ω is a two-layer MLP with a hidden size of 64
and ReLU activation for all layers except the last. It outputs
a geometric feature fΩ(·) with a size of 16. The appearance
network Φ is a three-layer MLP, also with a hidden size of
64. ReLU activations are used for all the layers except the
last layer, where a sigmoid function maps the predicted col-
ors to the range [0, 1].

1.1. Computation Time

We evaluate the computation time of each module on a
single NVIDIA RTX 3090 GPU. The full pose estimation
procedure, which includes pose initialization, pose refine-
ment, and pose selection, is completed within 2 seconds.
Rendering uncertainty maps is highly efficient, requiring
less than 0.01 seconds. In practice, assuming sequential in-
put test frames, the full pose estimation procedure is applied
only to the first frame of the test image sequence. For sub-
sequent frames, the estimated pose from the previous frame
serves as the sole pose hypothesis, and only pose refinement
is performed to update the pose for the new frame. This
refinement process takes less than 0.02 seconds per frame,
ensuring real-time performance. When object completion is
required, the full SDF training and Marching Cubes process

is executed, taking approximately 30 seconds to generate
the updated 3D model.

1.2. Hyperparameters

The hyperparameters and thresholds used in the main pa-
per are set as follows. For pose initialization in both our
method and the baseline implementation [10], the sampled
viewpoints (Nv) and in-plane rotations (Nin) are set to 42
and 12, respectively, yielding a total of 504 pose hypothe-
ses during the hypothesis generation step. The number of
pose refinement iterations is set to 5 for the first frame and
2 for subsequent frames. In the pose selection process, a
pose hypothesis is discarded if its uncertainty rate exceeds
the threshold Tu or if its seen IoU falls below the threshold
Ts, both set to 0.5. For storing frames and estimated poses
for object completion, a frame is included in the memory
pool P (with a maximum of 30 frames) only if its geodesic
distance exceeds the threshold Tgeo, set to 10 degrees. This
ensures that each frame provides a unique viewpoint to en-
hance model completeness while keeping P compact. Ad-
ditionally, a new frame can be appended to the memory pool
only if its seen IoU exceeds the confidence threshold Tconf ,
set to 0.5. Object completion is triggered when the seen IoU
falls below the threshold Tcomplete, set to 0.7. This ensures
that object completion is performed only when the model
lacks sufficient completeness. For SDF training, the train-
ing weights are set as follows: wc = 100 for the color loss,
we = 1 for the empty space loss, and ws = 1000 for the
surface loss.

1.3. Segmentation Methods

In this work, the object mask for each test image is re-
quired to calculate seen IoU and identify the region of the
object for object completion. To obtain per-frame 2D object
masks in test images, given the segmentation mask m0 of
the object of interest in the first-frame image I0, the object
masks of the following frames {m1,m2, . . . ,mk−1} are de-
termined by off-the-shelf segmentation methods [13].
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2. Datasets and Metrics
2.1. Preparing Partial References

Two RGBD references. In our work, all experiments
and baselines are conducted under the model-free setting,
where external RGBD images, along with their correspond-
ing camera poses, are used as references for pose estima-
tion. In [10], 16 reference images per object are sampled
from the YCB-Video training set [11] to form the subset
S, ensuring sufficient observations from diverse viewpoints.
To ensure that the first frame of the test images is covered by
the selected references for initial pose estimation, we manu-
ally select 2 reference images per object from S for the test
sequences.
Single unposed RGB reference. In scenarios utilizing
single-image-to-3D methods [12] for pose estimation, we
use a single unposed RGB image as input to generate an ini-
tial 3D object model. Specifically, we manually select one
RGB image per object from the reference set S for each test
sequence. This selected image serves as the sole external
reference for generating the 3D model, without any addi-
tional depth or pose information.
Subset for the YCB-Video Dataset. In this work, we lever-
age the pose refinement and selection models from [10] to
estimate object poses using 3D object models generated
by image-to-3D approaches [4]. However, we observed
that current image-to-3D methods have difficulty gener-
ating accurate object models for certain objects. These
poorly generated models result in failed pose estimations,
introducing outliers into the average metrics. To ensure
a fair evaluation, for the YCB-Video dataset [11], we
focus on a subset of the evaluation set for the “single
RGB + Image-to-3D” experiments, including commonly
seen objects “004 sugar box,” “005 tomato soup can,”
“006 mustard bottle,” and “019 pitcher base.” This selec-
tion ensures consistent and stable evaluation results across
all baselines. For further discussion on the limitations of
current image-to-3D methods and pose estimation models,
please refer to Sec. 6.

3. Leveraging Single-Image-to-3D Methods
Generate an object 3D mesh. To generate an initial 3D
model of the object, we utilize InstantMesh [12], a single-
image-to-3D method that generates a coarse 3D mesh from
a single RGB image. InstantMesh combines learned geo-
metric priors with image features to infer the object’s shape
and produce a 3D mesh representation based solely on the
input RGB image. Given a single unposed RGB reference,
we employ InstantMesh to generate an initial 3D object
mesh, denoted as Ê i

g = (V i
g , C

i
g, F

i
g) where the vertices V i

g ,
vertex colors Ci

g , and faces F i
g .

Uncertainty map for the generated mesh. An uncer-
tainty map, Û i

g , is integrated into the mesh representation
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Figure 1. Pipeline for rescaling the generated model. The gen-
erated object model must be rescaled to match the actual object
size in the test images for accurate pose estimation. (a) In the first
stage, the coarse size of the model is estimated using the first frame
of the testing RGBD images. The maximum distance, L, between
the two farthest 3D points is computed to rescale the model to a
rough size. (b) In the second stage, multiple scaling factors are
uniformly sampled to slightly adjust the model size further, re-
sulting in several resized models. For each resized model, pose
hypotheses are generated and refined using the pose refinement
model. (c) Finally, the selection strategy is applied to score the
hypotheses and identify the optimal pose hypothesis and the fine
size of the model.

Ê i
g to create a hybrid representation, M̂i

g = (Ê i
g, Û i

g), for
uncertainty-aware pose estimation. The uncertainty map Û i

g

is generated by marking the viewpoint corresponding to the
initial RGB image as “certain” and labeling areas inferred
by the image-to-3D method as “uncertain.” This process in-
volves projecting Ê i

g onto the viewpoint of the reference
image using mesh rasterization, which maps 3D vertices
onto 2D image pixels. For each vertex, an uncertainty score
u(vi) is calculated based on its visibility in the reference
image. The uncertainty score u(vi) ∈ {0, 1} is defined as
follows: u(vi) = 0 if the vertex vi is visible in the reference
image, and u(vi) = 1 if the vertex is not visible. The result-
ing uncertainty map, Û i

g = {u(vi) | vi ∈ V i
g } is incorpo-

rated with Ê i
g to form the generated model M̂i

g = (Ê i
g, Û i

g).

Rescale the generated model. The generated model M̂i
g

requires rescaling to match the object’s actual size in the test
images for accurate pose estimation. To adjust the model
to a size closer to the real object, we propose a two-stage
coarse-to-fine process, as shown in the Fig. 1. In the first
stage, the coarse size is estimated using the depth map from
the first frame of the testing RGBD images. Specifically,
given the depth map and the object mask, 2D points within
the object mask are projected into 3D space using the corre-
sponding depth values. The maximum distance, L, between
the two farthest 3D points is then calculated. The gener-
ated model (represented as a mesh) is scaled such that its
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Figure 2. Qualitative results on the YCB-Video dataset. We compare our method with FoundationPose [10] using an object 3D model
generated from a single RGB image by the image-to-3D approach [12]. The columns, from left to right, display the test RGBD images
(left: RGB, right: depth), results from FoundationPose, and results from our method. The object 3D models are visualized by rotating them
based on the estimated poses. Additionally, the uncertainty map (red: seen region of the object 3D model; gray: object mask of the test
image) and the Seen IoU metric (indicating the overlap between the seen region of the object 3D model and the object mask) are shown.
In the final column, we demonstrate our iterative process of pose estimation and online object completion in our method, highlighting how
an initial generated object 3D model is refined into a more complete and accurate object 3D model that better represents the real object’s
appearance and geometry. In contrast to directly using FoundationPose with the initial generated object 3D model (second column), which
may not closely resemble the real object captured in the test images, our method maintains the completeness and correctness of the object
3D model while enhancing pose estimation accuracy.

diameter, which is defined as the distance between its two
farthest vertices, matches this coarse object length L, re-
sulting in the rescaled model M̂c

g . In the second stage, we
refine the scaling to determine the fine object length, L′.
Multiple scaling factors, S = {0.8, ..., 1.2} (|S| = 11),
are uniformly sampled and multiplied by the coarse length
L to produce |S| resized models. For each resized model,
N ′

v ·N ′
in pose hypotheses are generated, where N ′

v = 5 rep-
resents the number of sampled viewpoints, and N ′

in = 24
denotes the number of sampled in-plane rotations. This pro-
cess results in a total of |S| ·N ′

v ·N ′
in pose hypotheses. We

then apply the pose refinement and selection strategy de-
scribed in Sec. 3.3 of the main paper to identify the optimal
pose hypothesis. The corresponding resized model, M̂f

g , is
scaled to the fine object length L′ = s · L, where s ∈ S .
This refinement process is repeated iteratively three times,
resulting in the final model M̂′ = (Ê ′, Û ′) used for pose
estimation.

Generate augmented data for object completion. To fur-
ther leverage the generated 3D model, we render RGBD im-

ages from the image-to-3D generated mesh Ê ′ as augmented
data for SDF training. This supervision helps enhance the
object geometry in unseen regions, providing more com-
plete information for pose estimation. Specifically, we uni-
formly sample 24 viewpoints from an icosphere centered on
the generated object mesh Ê ′, rendering synthesized object
images Î = {Î0, Î1, . . . , Î23}, along with their associated
poses and 2D object masks, as augmented data for object
completion. During testing, the initial generated model M̂′

is used to estimate poses for the first few test frames. When
the rotational geodesic distance between the initial pose and
a newly estimated pose exceeds a threshold Tgen(set to 45
degrees), a “refined object model” is trained to replace the
initial generated model, resulting in a more complete and
accurate representation. During this refinement, synthe-
sized object images in Î are used to enhance the geometry in
unseen regions of the object. However, synthesized images
may negatively impact SDF training if the corresponding
regions have already been accurately captured by real im-
ages. Such overlap can introduce inconsistent supervision
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Figure 3. Leveraging image-to-3D approaches for pose estimation across diverse reference images and test sequences. We demon-
strates the diversity and effectiveness of our method in utilizing the image-to-3D approach [12] to generate object 3D models for various
test sequences. Each row represents a test sequence and includes the reference image, the generated object 3D model (front and back
views), the test RGBD image, and the rotated mesh based on the estimated pose. The results highlight our method’s ability to successfully
perform pose estimation across different test sequences, showcasing the potential of leveraging image-to-3D approaches for pose estima-
tion using various single RGB images.

and degrade the final SDF quality. To address this, we em-
ploy an uncertainty map U to filter out unnecessary synthe-
sized images. Before each SDF training iteration, we render
the uncertainty map for the “refined object model” using the
pose of each synthesized object image Îi and compare the
visible region with the 2D object mask of Îi. If more than
30% of the pixels in Îi’s 2D mask overlap with regions al-
ready marked as “seen” in the “refined object model”, the
synthesized image Îi is removed from Î. By filtering out
redundant or conflicting synthesized data, this process en-
sures that synthesized images are used exclusively to super-
vise unseen regions.
Difference with Gigapose. The prior work, GigaPose [5],
investigated using object models generated by the single-
image-to-3D method [3] for pose estimation. In GigaPose,
a 3D object model is created from the first frame of the
“RGBD” test images, with the depth map used to accu-
rately scale the model. This generated 3D model is then
directly applied for pose estimation across the entire test
sequence. However, as discussed in Sec. 4 of the main pa-
per, we demonstrate that such generated models often fail
to represent real objects accurately, especially when objects
rotate into unseen regions not covered by the initial partial
references. Moreover, if the object is occluded in the first
frame of the test image, GigaPose may struggle to gener-
ate a reasonably complete 3D model based on the cropped
object image. In contrast, we focus on a more challeng-
ing scenario where only a single external “RGB” reference

image is provided, without any depth information. “RGB”
images are more applicable to everyday use cases, such
as using internet-sourced images as references. Moreover,
these external reference images can carry valuable meta-
information for robotic tasks, such as grasping patterns and
detection markers, making them highly practical for real-
world applications.

4. Qualitative Results
4.1. Pose Estimation and Online Shape Completion

In Fig. 2, we demonstrate the effectiveness of our method
for pose estimation and online shape completion in the sce-
nario where a single image is used as input and we lever-
age the image-to-3D approach [12] to generate the initial
object 3D model for pose estimation. The experimental
results show that directly using the generated model with
FoundationPose [10] often fails to produce optimal results,
as these models may not accurately represent real objects.
In contrast, UA-Pose utilizes the generated model solely for
initial pose estimation and for rendering RGBD images as
augmented data to support object completion, as detailed
in Sec. 3. This iterative approach reconstructs an object 3D
model that is more closely aligned with the real object.

4.2. Diverse generated objects

We showcases the ability of our method to utilize image-
to-3D approaches for pose estimation with diverse refer-
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Figure 4. Effects of the number of reference images. The ADD-
S scores in the YCBInEOAT dataset with 2, 4, 8, and 16 reference
images are reported. Our method demonstrates stable performance
across different numbers of reference images, while Foundation-
Pose [6] shows significant performance drops when fewer refer-
ence images (e.g., 2 and 4 views) are used.

ence images across different test sequences. As illus-
trated in Fig. 3, each row corresponds to a unique test se-
quence. By leveraging image-to-3D techniques, our method
achieves successful pose estimation with object 3D models
generated based on single RGB images. This demonstrates
the potential of leveraging image-to-3D approaches in en-
hancing pose estimation for real-world applications.

5. Additional Analysis

Effects of the viewpoints of input reference images. We
conduct an experiment on the YCBInEOAT dataset [8] to
evaluate the effect of varying the viewpoints of input refer-
ence images, specifically in the scenario with two input ref-
erence images. For each test sequence, we select three dis-
tinct pairs of reference images captured from different view-
points. The results show that FoundationPose [10] achieves
average ADD-S, ADD, and CD scores of 75.61, 65.37, and
0.905 cm, respectively. In comparison, our method achieves
93.47, 85.26, and 0.691 cm, with an average of approxi-
mately 6 SDF reconstructions per test sequence. These re-
sults demonstrate that our approach is robust to variations
in reference viewpoints and outperforms the baseline.
Effects of the number of reference images. To examine
the effect of the number of reference views, we plot the
ADD-S scores on the YCBInEOAT dataset using different
numbers of reference images in Fig. 4. The ADD-S scores
show that our method maintains consistent performance
across different numbers of reference images, while Foun-
dationPose [6] experiences significant performance drops
when fewer reference images (e.g., 2 and 4 views) are
used. Note that this experiment excludes the test sequence
“tomato soup can” due to occasional pose estimation fail-
ures, as discussed in Sec. 6, which introduce outliers for
comparison.

Selected Best Hypothesis 
(score: 138.906)

Unselected Hypothesis
(score: 138.781)

Test RGBD Image
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Figure 5. Incorrectly selected hypothesis. Given a test RGBD
image (left: RGB, right: depth), the pose selection module [10]
scores all pose hypotheses and selects the one with the highest
score as the pose estimation result. However, the selection module
may occasionally assign a higher score to an obviously incorrect
pose hypothesis (selected hypothesis, score: 138.906) while as-
signing a lower score to a more reasonable estimation (unselected
hypothesis, score: 138.781). Such incorrect selections result in
unstable pose estimation.

RGB Image Generated Mesh

Figure 6. Generated models from cropped object images. We
illustrate the limitations of single-image-to-3D approaches when
relying on cropped or occluded reference images. The left column
shows the RGB reference images and the right column displays the
corresponding generated object 3D models. The results highlight
that when the reference image is cropped or the object is partially
occluded, the resulting 3D model is incomplete and fails to accu-
rately represent the full object geometry.

6. Limitations

Foundation models for pose estimation. As shown
in Fig. 5, the pose selection module of [10] may occasion-
ally select an obviously incorrect pose hypothesis as the
best. This issue likely arises because the pose selection
model [10] was primarily trained on well-reconstructed ob-
ject models that closely resemble real objects, rather than on
incomplete, poorly reconstructed, or generated 3D models.
To improve reliability, finetuning the pose selection model
on synthesized data derived from incomplete object mod-
els could enhance its robustness and accuracy, reducing the
occurrence of selecting clearly incorrect pose hypotheses.
Image-to-3D methods. Image-to-3D approaches generally
rely on high-quality object reference images. When the
reference image is cropped or the object is partially oc-



cluded, the generated object 3D model is often incomplete,
as shown in Fig. 6. Additionally, as highlighted in the ex-
periments of the main paper, using a single unposed RGB
image that captures an object from only a specific view-
point often results in object 3D models that fail to accu-
rately resemble real objects, particularly in their uncaptured
regions. Future work could address these limitations by
integrating our pipeline with multi-view image-to-3D ap-
proaches to capture more comprehensive object information
from different viewpoints. Alternatively, exploring image-
to-3D methods that utilize RGBD inputs could better lever-
age depth information to infer more accurate and detailed
object 3D geometry.
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