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A. Extended Related Work

A.1. Scene Graph Generation
Scene Graph Generation (SGG) approaches focus on
static image-based SGG (ImgSGG) and video-based
SGG (VidSGG). For ImgSGG, sequential encoders like
LSTM [23] and attention mechanisms [19] capture global
context. Recent works [3, 7, 15] improve entity and pred-
icate proposals, with SGTR [7] advancing this through
a transformer-based architecture for more accurate scene
graph generation.

VidSGG extends Scene Graph Generation (SGG) to dy-
namic contexts by incorporating intra-frame relationships,
crucial for capturing temporal dependencies [5]. Recent ad-
vancements enhance temporal coherence through improved
modeling of temporal dependencies [9], while efficiency
is boosted by adaptive structures [18]. Additionally, so-
cial context modeling [1] refines the understanding of in-
teractions between multiple agents, further improving scene
graph accuracy and robustness.

Despite their success, existing methods ignore unbiased-
ness. This results in biased SGG with inaccurate and mis-
leading relationships in scenes. Consequently, such biases
make models less reliable and less generalizable to real-
world applications.

A.2. Unbiased Scene Graph Generation
Unlike conventional SGG, unbiased SGG focuses on reduc-
ing biases towards frequent objects and relationships. Key
approaches in this area include knowledge distillation [6]
and dual-branch architectures [24], which tackle different
aspects of bias. For example, LS-KD [6] uses knowledge
distillation to address multi-predicate challenges by lever-
aging a teacher-student framework to improve relationship
diversity. Building on this, DHL [24] employs a dual-
branch architecture to ensure balanced attention between
head and tail classes, preventing the dominance of com-
mon predicates. These methods complement each other by
addressing bias from different angles, contributing to more
accurate and balanced scene graph generation.

For unbiased VidSGG, Transformer-based models [2]
and Gaussian Mixture Models [12] have been explored to
capture video dynamics better and reduce bias in visual re-
lations. Iterative approaches [14] use conditional variables
to improve video relation detection but lack a hierarchical
strategy that integrates both visual and semantic representa-
tions, as in our method.

Unlike existing approaches that merely apply traditional
debiasing strategies to VidSGG, our framework leverages
the inherent visual-semantic nature of scene graphs. This
enables a solution that is both experimentally validated and
theoretically robust, effectively addressing the fundamental
challenges in achieving unbiased VidSGG.

B. Additional Details on MGSM
In this section, we derive the variance of the memory repre-
sentation Mt

i and establish the upper and lower bounds for
the update parameter λ. In our proposed Memory Guided
Sequence Modeling (MGSM) module, the memory repre-
sentation Mt

i is updated using the following equation:

Mt+1
i = (1− λ)Mt

i + λvt
i , (1)

where λ is the update rate, and vt
i represents the feature

vector at time step t for object i. The feature vector vt
i is

modeled as:
vt
i = vi + ϵti, (2)

with ϵti being zero-mean Gaussian noise with covariance Σ,
i.e.,

E[ϵti] = 0, Cov[ϵti] = Σ. (3)

We assume that the noise terms are independent across
different time steps and objects. To derive the variance of
the memory representation Mt

i, we proceed as follows.

Expectation of Memory Representation Taking the ex-
pectation of both sides of the update equation (1):

E[Mt+1
i ] = (1− λ)E[Mt

i] + λE[vt
i ]. (4)

Since E[ϵti] = 0 from equation (3), we have:

E[vt
i ] = vi. (5)

Assuming steady-state where E[Mt+1
i ] = E[Mt

i] = M,
equation (4) simplifies to:

M = (1− λ)M+ λvi ⇒ M = vi. (6)

Variance of Memory Representation Next, we compute
the variance Var[Mt

i]. Taking the variance of both sides of
the update equation (1):

Var[Mt+1
i ] = Var[(1− λ)Mt

i + λvt
i ]. (7)

Since Mt
i and vt

i are independent, the variance propagates
as:

Var[Mt+1
i ] = (1− λ)2 Var[Mt

i] + λ2 Var[vt
i ]. (8)



Given that Var[vt
i ] = Σ from equation (3), we substitute

into equation (8):

Var[Mt+1
i ] = (1− λ)2 Var[Mt

i] + λ2Σ. (9)

Assuming steady-state where Var[Mt+1
i ] = Var[Mt

i] =
V, we get:

V = (1− λ)2V + λ2Σ. (10)

Solving for V:

V
[
1− (1− λ)2

]
= λ2Σ, (11)

1− (1− λ)2 = 2λ− λ2, (12)

V(2λ− λ2) = λ2Σ, (13)

V =
λ2Σ

2λ− λ2
=

λΣ

2− λ
. (14)

For small λ, the expression simplifies to:

Var[Mt
i] =

λΣ

2− λ
≈ λΣ

2
. (15)

While minimizing the variance of the memory represen-
tation is desirable for enhancing stability, the update param-
eter λ must be carefully selected to balance variance reduc-
tion and the model’s ability to adapt to new information.
Specifically, λ cannot be too small, as excessively small val-
ues slow the adaptation to new information and may intro-
duce significant bias.

Bias-Variance Trade-off The total error in the memory
representation can be decomposed into bias and variance:

Total Error = Bias2 + Variance. (16)

From the variance derivation in equation (15), we have:

Var[Mt
i] ≈

λΣ

2
. (17)

Next, we analyze the bias introduced by the update mecha-
nism. Assume that the feature vector evolves over time as:

vt+1
i = vt

i + δ, (18)

where δ is a constant change vector representing the feature
change rate. Substituting equation (18) into the memory
update equation (1), we get:

Mt+1
i = (1− λ)Mt

i + λ(vt
i + δ). (19)

Assuming no noise for bias analysis (ϵti = 0) and itera-
tively applying the update equation starting from t = 0, we
can derive the bias over time.

Bias Derivation At t = 0, the initial memory is set to the
initial feature:

M0
i = v0

i = vi. (20)

For t ≥ 0, the update equation without noise becomes:

Mt+1
i = (1− λ)Mt

i + λ(vt
i + δ). (21)

Substituting the feature evolution from equation (18):

vt
i = vt−1

i + δ = vi + tδ. (22)

Thus, the update equation becomes:

Mt+1
i = (1− λ)Mt

i + λ(vi + tδ + δ)

= (1− λ)Mt
i + λvi + λ(t+ 1)δ. (23)

We can unroll this recurrence relation to find the general
expression for Mt

i:

Mt
i = (1− λ)tM0

i

+ λ

t−1∑
k=0

(1− λ)kvt−k−1
i

+ λ

t−1∑
k=0

(1− λ)kδ. (24)

Since M0
i = vi, and vt

i = vi+tδ, the expression simplifies
over multiple iterations.

Steady-State Bias As t → ∞, the influence of the initial
memory and transient terms diminishes, leading to a steady-
state bias. From equation (19), in steady-state, we have:

M = (1− λ)M+ λvi + λδ. (25)

Solving for M:
λδ = λ(vi −M) ⇒ M = vi − δ. (26)

Thus, the bias in the memory representation at steady-state
is:

Bias = M− vi = −δ. (27)

However, this simplistic analysis overlooks the dynamic
nature of Mt

i. A more rigorous approach considers the cu-
mulative effect of λ over time, leading to a residual bias that
depends inversely on λ.

Alternative Bias Derivation Assuming that at each time
step, the feature vector increases by δ, the memory update
equation becomes:

Mt+1
i = (1− λ)Mt

i + λ(vi + tδ + δ)

= (1− λ)Mt
i + λvi + λ(t+ 1)δ. (28)

Unfolding this recursion, we find that the bias accumulates
over time and converges to:

Bias∞ = lim
t→∞

(Mt
i − vt

i) = −δ

λ
. (29)

This shows that the steady-state bias is inversely propor-
tional to λ.



Lower Bound for λ From equation (29), we observe that:

Bias∞ = −δ

λ
. (30)

As λ decreases, the magnitude of Bias∞ increases. To
ensure that the bias remains within acceptable limits, λ must
be bounded below by a positive value. Specifically, to main-
tain ∥Bias∞∥ ≤ ϵ, where ϵ is the maximum tolerable bias,
we derive: ∥∥∥∥−δ

λ

∥∥∥∥ ≤ ϵ ⇒ λ ≥ ∥δ∥
ϵ

. (31)

Therefore, the lower bound for λ is:

λ ≥ ∥δ∥
ϵ

. (32)

This implies that λ cannot be arbitrarily small, as doing
so would result in an unbounded increase in bias, thereby
compromising the accuracy and reliability of the memory
representation.

Optimal λ To minimize the total error, which comprises
both bias and variance, we balance the two components.
From equations (30) and (17), the total error is:

Total Error = ∥Bias∞∥2+Var[Mt
i] =

∥δ∥2

λ2
+

λΣ

2
. (33)

To find the optimal λ, we take the derivative of the total
error with respect to λ and set it to zero:

d

dλ

(
∥δ∥2

λ2
+

λΣ

2

)
= −2

∥δ∥2

λ3
+

Σ

2
= 0. (34)

Solving for λ:

−2
∥δ∥2

λ3
+

Σ

2
= 0, (35)

2
∥δ∥2

λ3
=

Σ

2
, (36)

λ3 =
4∥δ∥2

Σ
, (37)

λ =

(
4∥δ∥2

Σ

) 1
3

. (38)

Thus, the optimal λ that minimizes the total error is:

λopt =

(
4∥δ∥2

Σ

) 1
3

. (39)

B.1. Empirical Validation
In practice, the optimal λ is determined based on the spe-
cific values of δ and Σ derived from the data. From the
previous calculation, we get the approximate λ value as fol-
lowing:

λ ≈ 0.04, (40)

it suggests that:

λ =

(
4∥δ∥2

Σ

) 1
3

≈ 0.04. (41)

This optimal value balances the trade-off between min-
imizing bias and controlling variance, ensuring robust fea-
ture estimation in the MGSM module.

Through the derivation, we establish that the variance of
the memory representation decreases with a smaller λ, en-
hancing stability, while the bias increases inversely with λ,
reducing adaptability. The optimal λ of approximately 0.04
in our experiments effectively balances this trade-off, pro-
viding both robust and adaptable feature representations es-
sential for mitigating visual bias in video scene graph gen-
eration.

C. Additional Metrics and Evaluation Setup
We evaluate our approach using the standard metric for
unbiased VidSGG, mean Recall@K (mR@K) with K ∈
{10, 20, 50}. TEMPURA [12] serves as our baseline
method. Following established protocols [2, 5, 12], we con-
duct three Scene Graph Generation (SGG) tasks:

Predicate Classification (PREDCLS) which delivers
object localization and classes, necessitating the model to
discern predicate classes. Scene Graph Classification (SG-
CLS) furnishes precise localization, expecting the model to
identify both object and predicate classes. Scene Graph
Detection (SGDET) requires the model to initially detect
bounding boxes before classifying objects and predicate
classes. Evaluation is conducted across three distinct set-
tings: With Constraint, Semi Constraint, and No Con-
straint. Under the With Constraint setting, the generated
scene graphs are limited to at most one predicate per
subject-object pair. The Semi Constraint setting allows for
multiple predicates, yet only those surpassing a specified
confidence threshold (=0.9) are considered. Scene graphs
can contain multiple predicates between pairs without any
restrictions under the No Constraint. It is important to em-
phasize that another standard metric R@K is susceptible
to a bias favoring predominant predicate classes [12, 16],
whereas mR@K is averaged across all predicate classes,
thus providing an indicator of a model’s performance on
the unbiased VidSGG. Consequently, for the task of gener-
ating unbiased VidSGG, we will afford greater scrutiny to
the mR@K metric, as it offers a more balanced assessment
of model performance.

D. Additional Implementation Details
Following prior work [2, 8, 12], we adopted Faster R-
CNN [13] with ResNet-101 [4] as the object detector, ini-
tially trained on the AG dataset. To ensure a fair compari-
son, we utilized the official implementations of these meth-
ods. For our MGSM module, we set the λ parameter to



Table 1. Ablation study of MGSM and IRG under With Constraint.

With Constraint

PREDCLS SGCLS SGDET

mR@10 mR@20 mR@50 mR@10 mR@20 mR@50 mR@10 mR@20 mR@50

VISA 46.9 52.0 52.0 40.8 42.5 42.6 27.3 27.3 30.7
w/o MGSM 46.9 52.0 52.0 35.7 38.2 38.2 18.8 24.6 26.5
w/o MGSM & IRG 42.9 46.3 46.3 34.0 35.2 35.2 18.5 22.6 23.1

Table 2. Ablation study of MGSM and IRG under Semi Constraint.

Semi Constraint

PREDCLS SGCLS SGDET

mR@10 mR@20 mR@50 mR@10 mR@20 mR@50 mR@10 mR@20 mR@50

VISA 51.3 56.3 56.4 47.8 52.6 52.6 31.7 31.7 33.2
w/o MGSM 51.3 56.3 56.4 44.6 48.4 48.6 23.1 27.5 28.5
w/o MGSM & IRG 40.7 44.5 44.6 36.9 39.5 39.5 18.5 21.8 22.5

Table 3. Ablation study of MGSM and IRG under No Constraint.

No Constraint

PREDCLS SGCLS SGDET

mR@10 mR@20 mR@50 mR@10 mR@20 mR@50 mR@10 mR@20 mR@50

VISA 65.8 89.1 99.8 52.0 66.3 71.4 30.7 36.7 50.4
w/o MGSM 65.8 89.1 99.8 49.0 62.0 67.2 27.9 34.7 47.2
w/o MGSM & IRG 61.5 85.1 95.9 48.3 61.1 66.0 24.7 33.9 45.9

Table 4. Ablation study of HSE under With Constraint.

With Constraint

PREDCLS SGCLS SGDET

mR@10 mR@20 mR@50 mR@10 mR@20 mR@50 mR@10 mR@20 mR@50

VISA 46.9 52.0 52.0 40.8 42.5 42.6 27.3 27.3 30.7
w/o HSE 44.5 49.2 49.2 38.4 40.2 40.3 25.8 25.6 28.3

0.04 for the SGCLS task and 0.06 for the SGDET task. In
the IRG module, we implemented a dual-procedure setup,
enabling iterative relational inference with the number of it-
erations N set to 1. The framework was trained end to end
for 15 epochs using the AdamW optimizer [10] and a batch
size of 1. The initial learning rate was 10−5. We reduced
the initial learning rate by 0.5 whenever the performance
plateaus. All code ran on a single RTX 4090.

E. Supplementary Experimental Results

E.1. Complete Ablation study on VISA modules
Due to page constraints, the mR@50 results for the abla-
tion study on VISA modules were omitted from the main
text. Here, we present the complete ablation study in Ta-
bles 1, 2, and 3, demonstrating the effects of the visual and

semantic debiasing modules. Consistent with the ablation
study in the main body, we first removed the MGSM mod-
ule. Focusing on the mR@50 results, this removal led to
a minimal decrease of -3.2% in mR@50 for SGDET un-
der the No Constraint setting, underscoring MGSM’s strong
visual debiasing capability. Similarly, excluding the IRG
module resulted in a minimal decrease of -1.3% in mR@50
for SGDET under the No Constraint setting, highlighting
IRG’s effectiveness in mitigating semantic bias. These find-
ings validate our approach of partitioning scene graph bi-
ases into visual and semantic components, demonstrating
that our VISA framework effectively mitigates both biases
in VidSGG. Notably, MGSM was not applied to the PRED-
CLS task, as this task relies on ground-truth visual input,
rendering the inclusion of MGSM neutral to the results.



Table 5. Ablation study of HSE under Semi Constraint.

Semi Constraint

PREDCLS SGCLS SGDET

mR@10 mR@20 mR@50 mR@10 mR@20 mR@50 mR@10 mR@20 mR@50

VISA 51.3 56.3 56.4 47.8 52.6 52.6 31.7 31.7 33.2
w/o HSE 49.1 54.2 54.6 45.4 50.4 50.4 29.1 29.1 31.5

Table 6. Ablation study of HSE under No Constraint.

No Constraint

PREDCLS SGCLS SGDET

mR@10 mR@20 mR@50 mR@10 mR@20 mR@50 mR@10 mR@20 mR@50

VISA 65.8 89.1 99.8 52.0 66.3 71.4 30.7 36.7 50.4
w/o HSE 63.3 87.0 98.4 50.0 64.0 69.2 27.9 34.7 48.5

Table 7. Influence of increasing iteration count N under With Constraint.

With Constraint

PREDCLS SGCLS SGDET

mR@10 mR@20 mR@50 mR@10 mR@20 mR@50 mR@10 mR@20 mR@50

VISA 46.9 52.0 52.0 40.8 42.5 42.6 27.3 27.3 30.7
VISAN=2 47.9 53.0 53.0 41.7 43.4 43.4 28.7 28.7 31.9
VISAN=3 48.1 53.3 53.3 42.2 44.0 44.0 28.9 28.9 32.5
VISAN=4 48.9 53.8 53.8 42.8 44.5 44.5 29.5 29.5 33.1
VISAN=5 50.1 53.9 53.9 43.0 44.3 44.3 29.6 29.6 33.0

E.2. Ablation Study of HSE

In this section, we evaluated the effectiveness of the Hi-
erarchical Semantics Extractor (HSE) by replacing it with
a simple concatenation method. Specifically, the compos-
ite object feature pt

j,i was concatenated with the integrated
triplet embeddings Ct

pre,(j,i) and fed into the Spatial En-
coder. The results of this ablation study were presented
in Tables 4, 5, and 6. The results demonstrate that using
the concatenation approach led to a decrease of at least -
1.4% in mR@50 for the PREDCLS task under the No Con-
straint setting. This reduction was attributed to the simplis-
tic visual-semantic fusion strategy, which failed to effec-
tively integrate fine-grained visual and semantic features.
The hierarchical structure of HSE, in contrast, facilitated a
more sophisticated fusion process, capturing intricate rela-
tionships between visual and semantic information. This
enhanced integration was crucial for mitigating biases and
improving the accuracy of scene graph generation. The
observed performance decline underscored the importance
of maintaining hierarchical semantics extraction within the
VISA framework to ensure unbiased VidSGG.

E.3. Extended Study on the Influence of Iteration
Count N

In this section, we investigated how varying the iteration
number N affects our framework’s performance and de-
termine the point at which computing costs outweigh per-
formance gains. We incrementally increased the iteration
count until this phenomenon occurs. The results of this
analysis were detailed in Tables 7, 8, and 9. Examin-
ing the effect of iteration number N on the performance
of unbiased VidSGG, measured by mR@K, we observed
that higher values of N generally yield improved results.
Notably, performance gains plateau at N = 4, and by
N = 5, the computational costs begin to outweigh the bene-
fits, even resulting in a decline in unbiased generation capa-
bilities. We attributed this phenomenon to the limited train-
ing datasets, which caused the model’s self-correction ca-
pabilities to reach a bottleneck. Consequently, future work
may explore incorporating large language models (LLMs)
to enhance the framework’s adaptability and performance
further. LLMs’ inherent self-correction and language gener-
ation capabilities naturally complement this unbiased task.
Expanding the training dataset could help overcome the cur-
rent limitations, allowing for higher iteration counts without
incurring prohibitive computational costs.



Table 8. Influence of increasing iteration count N under Semi Constraint.

Semi Constraint

PREDCLS SGCLS SGDET

mR@10 mR@20 mR@50 mR@10 mR@20 mR@50 mR@10 mR@20 mR@50

VISA 51.3 56.3 56.4 47.8 52.6 52.6 31.7 31.7 33.2
VISAN=2 52.5 56.9 57.0 48.2 53.6 53.6 31.9 31.9 32.7
VISAN=3 52.8 57.1 57.2 48.5 53.9 53.9 32.0 32.0 32.9
VISAN=4 53.0 57.3 57.3 48.6 54.0 54.0 32.1 32.1 33.0
VISAN=5 53.1 57.4 57.4 48.4 54.0 54.0 32.2 32.2 33.1

Table 9. Influence of increasing iteration count N under No Constraint.

No Constraint

PREDCLS SGCLS SGDET

mR@10 mR@20 mR@50 mR@10 mR@20 mR@50 mR@10 mR@20 mR@50

VISA 65.8 89.1 99.8 52.0 66.3 71.4 30.7 36.7 50.4
VISAN=2 66.0 90.8 99.8 53.1 67.0 72.0 31.8 37.2 51.4
VISAN=3 66.2 91.2 99.9 53.5 67.2 72.5 32.0 37.5 51.9
VISAN=4 66.3 91.3 99.9 53.7 67.5 72.7 32.2 37.7 33.2
VISAN=5 66.3 91.4 99.6 53.5 67.3 72.5 32.3 37.8 33.3

F. Failure Cases
To elucidate the limitations inherent in our model, we
meticulously analyze the results and identify the most
prevalent types of failure cases. We identify and illustrate
several typical scenarios where VISA faces challenges, as
depicted in Fig. 1. (1) Undetected Small Objects. Small ob-
jects like cups may be too diminutive for detection by the
object detector, leading to the omission of related triplets
in VISA’s output. (2) Noisy Annotations and Challeng-
ing Scenes in AG. This includes incorrect annotations, low-
resolution videos, and extreme scene conditions. For in-
stance, scenes that are too dim to discern events accurately.
(3) Ambiguity in Object Recognition. Certain objects are in-
distinguishable even to human observers, such as differen-
tiating between a person holding a book and food. (4) Am-
biguity in Relationship Interpretation. Some relationships
are also challenging to discern, like determining whether a
person is looking at a cup or not.

We speculate that Failure (1), the adoption of a more ad-
vanced object detector could potentially offer a solution.
Addressing Failure (2) may involve comprehensive data
cleansing efforts. As for Failures (3) and (4), which we
attribute to the intrinsic constraints of human-labeled anno-
tations, an unsupervised learning approach might present a
viable resolution.

G. Supplementary visualization results

Figure 2 shows our t-SNE results for semantic (b,c) and
visual (d,e) features, effectively separating high- and low-

GT : person-holding-cup
Output : None 

GT : person-wearing-clothes
Output : None 

GT : person-holding-food
Output : person-holding-book

GT : person-not looking at-cup
Output : person–looking at-cup

(1) (2) (3) (4)

Figure 1. Prevalent Failure Cases. (1) Undetected Small Objects
(2) Noisy Annotations and Challenging Scenes (3) Ambiguity in
Object Recognition (4) Ambiguity in Relationship Interpretation

frequency classes (e.g., drink, medicine) and mitigating
both visual and semantic biases. This figure also offers
more results of complex scenes, featuring low-frequency
predicates (e.g., drink) and nouns (e.g., medicine) that are
smaller and harder to recognize.

H. Recall@K explanation

Recall@K(R@K) was used as a standard metric for previ-
ous VidSGG method [3, 12]. However, we excluded R@K
in the main paper due to reporting bias identified by leading
unbiased image-based SGG methods [11, 17, 20]. R@K fa-
vors high-frequency representations, a bias overlooked in
previous VidSGG methods. The R@K results were ob-
tained under the same experimental settings as in the main



(a) frame, people-drink-medicine (b) VISA, semantic (c) VISA w/o IRG, semantic

(d) VISA, visual (e) VISA w/o MGSM, visual

Figure 2. Supplementary visualizations.

paper (Table 10) and are included for completeness, though
they are not the primary focus in VidSGG.

Table 10. Quantitative R@K results.

Constraint Method PREDCLS SGCLS SGDET
R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50

W
ith

TEMPURA 68.8 71.5 71.5 47.2 48.3 48.3 28.1 33.4 34.9
FloCoDe 70.1 74.2 74.2 48.4 51.2 51.2 31.5 38.4 42.4
VISA (Ours) 70.2 74.9 75.3 49.1 51.9 52.3 32.2 39.3 43.8

Se
m

i TEMPURA 66.9 69.6 69.7 48.3 50.0 50.0 28.1 33.3 34.8
VISA (Ours) 70.8 76.6 76.7 56.8 61.2 61.2 35.9 40.9 42.0

N
o TEMPURA 80.4 94.2 99.4 56.3 64.7 67.9 29.8 38.1 46.4

FloCoDe 82.8 97.2 99.9 57.4 66.2 68.8 32.6 43.9 51.6
VISA (Ours) 83.5 98.5 99.9 58.0 67.2 70.1 33.2 44.7 52.4

As shown in Table 10, VISA surpasses all previous meth-
ods across all R@K metrics in unbiased VidSGG.

I. More details on PVSG and 4DPVSG
We keep the baseline unchanged from the original pa-
per [21, 22]. For PVSG, we adopt a Mask2Former-based
method for image panoptic segmentation, then use Uni-
Track for visual representations, and finally apply a Trans-
former encoder for relationship prediction. For 4DPVSG,
we process 3D video clips with Mask2Former for frame-
level panoptic segmentation, link instance embeddings
across frames via UniTrack, and employ a Spatial-Temporal
Transformer to incorporate temporal context and inter-
object interactions.
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