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A. Additional Related Works
Different neural network architectures, trained on distinct
datasets, develop unique inductive biases that influence their
feature representation capabilities. For instance, the CLIP
series [15, 17, 21], pretrained with text-image contrastive
alignment, excels at capturing global semantic features. In
contrast, the DINO series [14, 22], pretrained with vision-
only contrastive learning, specializes in fine-grained per-
ception and object-level details. Prior research shows that
integrating features from complementary networks can lead
to a more balanced and robust model behavior [6, 16].

Building on these strengths, COMM [8] demonstrates
the effectiveness of integrating features from different layers
of CLIP and DINOv2 to enhance the visual capabilities of
multimodal large language models (MLLMs). By leveraging
the complementary nature of these architectures, COMM
achieves improved performance across various visual tasks.
Similarly, CLIP-DINOiser [19] uses localization priors from
DINO to refine CLIP’s global image features, resulting in
smoother and more precise outputs for semantic segmen-
tation tasks. Furthermore, Nguyen et al. [13] explore the
multi-level features of DINO to fine-tune the final block of
CLIP. This approach not only tackles the challenge posed by
the limited scale of training datasets in deepfake detection
but also enhances model interpretability through the use of
attention mechanisms. These studies collectively highlight
the potential of combining the strengths of diverse architec-
tures to overcome individual limitations, achieve superior
performance, and improve explainability in complex visual
tasks. However, these methods often rely on specific archi-
tectures and require additional adjustments or training for
integration, which limits their flexibility and scalability.

To address these limitations, our proposed DINO-HEAL
offers a flexible and architecture-agnostic solution that can be
applied at the inference stage without modifying the under-
lying model structures. Unlike previous approaches, DINO-
HEAL does not require additional training parameters or
fine-tuning, making it particularly suitable for mitigating
hallucinations in resource-constrained scenarios.

B. Implementation Details
B.1. Data Collection on Existing Datasets
To apply our data collection pipeline to the selected datasets,
we employ a structured process for segmenting and pairing
videos. Specifically, for ActivityNet [7] and YouCook2 [24],
videos are divided into multiple action-based segments. We

then compute similarities between all segment pairs within
each video to identify pairs meeting the similarity criteria.
For VALOR32K [3], videos are randomly paired, and their
similarities are calculated to determine if they satisfy the
conditions. The resulting filtered video pairs, characterized
by high semantic similarity but low visual similarity, form
the core of our dataset, enabling effective investigation into
hallucination phenomena.

B.2. Prompts for Different Hallucination Tasks
The following subsections show the prompts we use to test
models on each hallucination task: action hallucination
(ACH), temporal sequence hallucination (TSH), and scene
transitional hallucination (STH).

B.2.1. Prompt for Binary QA in ACH

<Video>
Is the primary action in the video
{Action}?
Only answer with "No" or "Yes".

The placeholder {Action} in the prompt is dynamically re-
placed with a specific action, such as ‘turning the steering
wheel’. To further enhance the diversity of the benchmark,
each Binary QA question is randomly assigned one of four
templates: “Is the prominent action in the video {Action}?”,

“Does the video primarily feature {Action}?”, “Is the key
action shown in the video {Action}?”, or “Is the primary
action in the video {Action}?” These variations introduce
linguistic diversity while preserving the semantic meaning.

B.2.2. Prompt for MCQs in ACH

<Video>
"Question": "What is the prominent
action in the video?" Please select
the correct answer (one or more options),
only return the choice letter (i.e., A,
B, C, D) of your answer(s).

"Choices":
"A": "{Action A}"
"B": "{Action B}"
"C": "{Action C}"
"D": "{Action D}"

The placeholders {Action A}, {Action B}, {Action C}, and
{Action D} are dynamically replaced with specific actions,
such as “wakeboarding,” “changing gears,” “adjusting the



rearview mirror,” and “turning the steering wheel.” To in-
troduce linguistic diversity and enhance the robustness of
the benchmark, each MCQ is randomly assigned one of
the following templates: “What is the prominent action in
the video?”, “What is the key action shown in the video?”,

“What is the primary action in the video?”, or “What is the pre-
dominant action captured in the video?”. These variations
ensure that the benchmark reflects a range of natural question
formulations while maintaining consistency in meaning.

B.2.3. Prompt for Sorting Questions in TSH

<Video>
Below are two actions in the video:
Action A. {Action A}
Action B. {Action B}

Sort these two actions in the order they
occur in the video, and return which
action happens before which one. For
example, "Action A before Action B" or
"Action B before Action A". If you only
detect one action of these two in the
video, return that action.

The placeholders {Action A}, {Action B} are replaced with
specific actions. For instance, with the actions of skiing and
driving a car, the prompt will look as the following example:

“Below are two actions in the video: Action A. skiing, Action B.
driving a car. Sort these two actions in the order they occur
in the video, and return which action happens before which
one. For example, ‘Action A before Action B’ or ‘Action B
before Action A’. If you only detect one action of these two
in the video, return that action.”

B.2.4. Prompt for Open-ended Questions in STH

<Video>
A scene change is defined as a
significant transition in the overall
environment or location within the
video. This means a change from one
distinct setting to another, such as
moving from a kitchen to a living room,
or from indoors to outdoors. Watch the
given video and determine if a scene
change occurs. If there is a scene
change, respond in the format: "Scene
change: Yes, Locations: from [location]
to [location2]." If no change occurs,
respond: "Scene change: No, Locations:
None".

B.3. Additional Dataset Statistics
Figure 1 displays a word cloud of our benchmark, providing
a more intuitive presentation of VIDHALLUC. As shown

Figure 1. The wordcloud of VIDHALLUC.

in the figure, the questions in our benchmark are diverse
and prominently feature action-related terms, such as “play-
ing,” “walking,” “cutting,” “cleaning,” and “jumping.” These
terms highlight the dynamic nature of the video content in
our benchmark, emphasizing the focus on activities and in-
teractions within videos. The word cloud reflects the breadth
of actions and events covered, including activities like “mix-
ing ingredients,” “pouring water,” “riding,” and “driving.”
This diversity aligns with our goal of capturing the chal-
lenges associated with action recognition, temporal coher-
ence, and scene understanding in videos. We believe our
benchmark can effectively reveal potential hallucination is-
sues in MLLMs, especially those related to understanding
complex actions in dynamic video content.

C. More Quantitative Results on VIDHALLUC

We provide additional metrics and detailed scores of state-
of-the-art MLLM performance on VIDHALLUC. For open
source models, we include Video-ChatGPT [12], Video-
LLaVA [10], ShareGPT4Video [2], Chat-UniVi [9], LLaVA-
NeXT-Video [23], PLLaVA [20], VideoLLaMA2 [4], and
VILA 1.5 [11]. For proprietary models, we select Gemini-
1.5-Pro [18], and GPT-4o [1].

Quantitative results on ACH. Table 1 presents two dis-
tinct versions of the quantitative results for these models on
the ACH task. The binary QA and MCQ scores are com-
puted by dividing the number of correct answers by the total
number of questions, following the metric defined as:

Accuracy =
Ncorrect

Ntotal
, (1)

where Ncorrect and Ntotal denote non-negative counts of cor-
rect answers and total answers. In contrast, binary QA Pair
and MCQ Pair scores are based on a stricter criterion requir-
ing both questions in a pair to be answered correctly. This
stricter evaluation ensures that the model fully understands
both semantically similar but visually different videos.

As mentioned in the main paper, an interesting observa-
tion is that the accuracy for MCQ is higher than that for



Models Binary QA Binary QA Pair MCQ MCQ Pair

Video-ChatGPT [12] 9.50 0.19 24.58 5.56
Video-LLaVA [10] 26.84 9.87 64.45 40.34
ShareGPT4Video [2] 29.96 10.65 44.78 19.18
Chat-UniVi [9] 23.77 6.39 54.79 29.37
LLaVA-NeXT-Video [23] 26.60 12.00 77.57 60.03
PLLaVA [20] 35.30 16.26 76.96 59.94
VideoLLaMA2 [4] 50.04 29.09 83.84 69.85
VILA1.5 [11] 58.46 37.77 81.88 67.95

Gemini-1.5-Pro [18] 75.27 59.10 79.25 63.36
GPT-4o [1] 81.15 66.79 90.95 83.00

Table 1. Performance comparison of existing models on action
hallucination (ACH). The numbers in the table represent accuracy
percentages (%). Bold numbers denote the best performance, and
underlined numbers indicate the second-best performance.

binary questions. This result defies common intuition, as
one might expect binary questions, with only two possible
answers, to be inherently simpler and, therefore, yield higher
accuracy compared to MCQs, which involve selecting from
multiple options. This discrepancy suggests that models may
leverage contextual or comparative cues more effectively in
MCQ scenarios, while binary questions might require more
precise reasoning or direct understanding, exposing potential
weaknesses in model comprehension.

Quantitative results on STH In STH, we benchmark
MLLMs with the new criterion that evaluates both the classi-
fication of the scene and whether the model describes it in
the correct sequence. For the classification scores, we use
the Matthews correlation coefficient (MCC) to evaluate the
model predictions against the ground truth labels.

n11 × n10 − n01 × n00√
(n11 + n01)(n11 + n00)(n10 + n01)(n10 + n00)

, (2)

where A ∈ {0 (False), 1 (True)} represents the actual con-
dition, P ∈ {0 (Negative), 1 (Positive)} represents the pre-
dicted condition, and nAP denotes non-negative counts. To
adjust MCC to range between 0 and 1 and to further penalize
models that consistently answer only “Yes” or only “No”,
we apply the transformation in order to adjust MCC to range
between 0 and 1, obtaining the classification score Scorecls:

Scorecls =

(
MCC + 1

2

)2

. (3)

The description task measures the model’s ability to accu-
rately identify and articulate the information of the scene.
To evaluate this, scene descriptions are extracted from both
the model’s output and the ground truth, structured for di-
rect comparison. We then calculate the cosine similarity
S between the SimCSE [5] embeddings of the correspond-
ing scenes. Based on this similarity measure, each scene
description score is calculated as:

Models Scorecls Scoredesc Scoreoverall

Video-ChatGPT [12] 5.07 11.65 7.70
Video-LLaVA [10] 25.00 36.50 29.60
ShareGPT4Video [2] 29.55 0.26 17.83
Chat-UniVi [9] 30.12 29.50 29.87
LLaVA-NeXT-Video [23] 55.91 27.14 44.40
PLLaVA [20] 29.86 36.32 32.44
VideoLLaMA2 [4] 87.43 31.67 65.12
VILA1.5 [11] 25.00 50.07 35.03

Gemini-1.5-Pro [18] 71.88 52.08 63.96
GPT-4o [1] 80.17 58.69 71.58

Table 2. Performance comparison of existing models on scene
transition hallucination (STH). We assign a weight of 0.6 to the
classification task and 0.4 to the description task. The numbers
in the table represent accuracy percentages (%). Bold numbers
denote the best performance, and underlined numbers indicate the
second-best performance.

Scoredesc =

{
0, if S ≤ THRlow

σ(S)−σ(THRlow)
σ(1)−σ(THRlow)

, if S > THRlow
, (4)

where S denotes the cosine similarity between the Sim-
CSE [5] embeddings of the corresponding scenes, THRlow
represents the minimum threshold for assigning a score, and
σ is the Sigmoid function. The overall description score is
calculated as the average of the score for the “from” and “to”
scenes. Finally, the overall evaluation score is computed as a
weighted sum of the classification score and the normalized
description score:

Scoreoverall = α× Scorecls + (1− α)× Scoredesc. (5)

Table 2 summarizes the decomposed scores of classification
and description scores for the STH category. An interesting
observation is that both Video-LLaVA and VILA 1.5 achieve
a classification score of 25% by consistently answering “Yes”
to all questions, irrespective of their actual ability to recog-
nize transitions between locations. This pattern, highlighted
in the 10th row of Table 8, exposes a critical limitation in
both the MCC metric and the model themselves. Their re-
liance on default affirmative response reveals a superficial
understanding of spatial transition and suggests a lack of
deeper reasoning.

Future work should focus on developing mechanisms to
penalize such oversights and promote consistency in model
behavior, ensuring that metrics better reflect genuine under-
standing and performance. This includes designing metrics
or loss functions that discourage uniform responses and pro-
mote adaptive reasoning based on context.
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Figure 2. The visualization of saliency maps.

D. DINO-HEAL

D.1. Saliency Analysis
Figure 2 illustrates the input frames, saliency maps gener-
ated by CLIP and DINOv2, and the adjusted saliency map
produced by DINO-HEAL. The saliency maps generated by
CLIP often show significant noise, which can be attributed to
its inductive bias toward capturing global contextual frame
information. This characteristic, while beneficial for under-
standing broader scene-level features, can result in a lack
of focus on specific, spatially important regions within the
frame. In contrast, DINOv2 demonstrates a stronger capac-
ity to localize and emphasize key objects within the scene,
leveraging its vision-only contrastive learning to identify
fine-grained details efficiently. The adjusted saliency maps
created by DINO-HEAL reflect an integration of these two
approaches, balancing the strengths of both CLIP and DI-
NOv2. By mitigating the noisiness of CLIP’s global focus
and incorporating the precise localization capabilities of DI-
NOv2, DINO-HEAL effectively emphasizes spatially signif-
icant features. This result strongly supports our hypothesis
that DINO-HEAL serves as a complementary mechanism to
CLIP, enhancing its ability to prioritize critical regions and
improving overall spatial feature representation.

D.2. Additional Results on VIDHALLUC

Tables 3 and 4 show the results of the ACH and STH tasks
when baseline models are augmented with our hallucination
mitigation method, DINO-HEAL. A particularly notewor-
thy observation is the significant improvement in scores for
Video-LLaVA and VILA 1.5 on the STH task. Previously,
these models consistently defaulted to answering “Yes” re-
gardless of the correct location-based response. With the

integration of DINO-HEAL, however, they demonstrate an
improved ability to discern and appropriately respond with
”No” when necessary, as elaborated in Section C. This in-
dicates a meaningful enhancement in their spatial reason-
ing and decision-making capabilities. This improvement
underscores the potential of DINO-HEAL to refine spatial
reasoning and address their shortcomings effectively.

Tables 5 and 6 further detail the results for Video-
ChatGPT, Video-LLaVA, and VideoLLaMA2 on the ACH
and TSH tasks, comparing performance with and without
DINO-HEAL. For the ACH task, we use the binary QA ac-
curacy metric. Without DINO-HEAL, none of the models
correctly predict all question pairs, though VideoLLaMA2
is able to infer the second question pair accurately. When
DINO-HEAL is applied, however, all models can predict
both pairs accurately, showcasing the method’s effectiveness
in mitigating hallucinations. On the TSH task, we observe
further improvements. Initially, Video-ChatGPT recognizes
that two actions occur simultaneously, while the ground
truth sequence is “starting a fire” followed by “gutting a
fish”. Video-LLaVA and VideoLLaMA2 only identify one
action, “starting a fire”. After integrating DINO-HEAL, all
three models correctly identify and sequence both actions,
underscoring the method’s ability to enhance temporal un-
derstanding in complex tasks.

E. More Qualitative Results on VIDHALLUC

Tables 7, 8, and 9 present randomly selected examples show-
casing multiple model responses for the ACH, TSH, and
STH tasks, respectively. For the ACH task, the Binary QA
Pair metric is used, which applies a stricter evaluation cri-
terion requiring both questions in a pair to be answered
correctly. In particular, the adversarially crafted pairs in



Models Binary QA Binary QA Pair MCQ MCQ Pair

Video-ChatGPT 9.50 0.19 24.58 5.56
+DINO-HEAL 13.96+4.46 0.42+0.23 28.81+4.23 6.76+1.20
Video-LLaVA 26.84 9.87 64.45 40.34
+DINO-HEAL 33.80+6.96 14.17+4.3 66.25+1.8 41.64+1.3
ShareGPT4Video 29.96 10.65 44.78 19.18
+DINO-HEAL 30.41+0.45 9.73-0.92 44.43-0.35 18.62-0.56
VILA1.5 58.46 37.77 81.88 67.95
+DINO-HEAL 60.63+2.17 40.34+2.57 81.85-0.03 67.90-0.05
VideoLLaMA2 50.04 29.09 83.84 69.85
+DINO-HEAL 50.01-0.03 29.07-0.02 83.84+0.0 69.85+0.0

Table 3. Performance comparison of models on action hallucination
(ACH), with and without DINO-HEAL. Improvements from DINO-
HEAL are shown as subscripts. Bold numbers denote the best
performance after applying DINO-HEAL.

Models Scorecls Scoredesc Scoreoverall

Video-ChatGPT 5.07 11.65 7.70
+DINO-HEAL 5.56+0.49 12.15+0.5 8.20+0.5
Video-LLaVA 25.00 36.50 29.60
+DINO-HEAL 27.89+2.89 35.18-2.61 30.81+0.69
ShareGPT4Video 29.55 0.26 17.83
+DINO-HEAL 28.80-0.75 2.78+2.52 18.39+0.56
VILA1.5 25.00 50.07 35.03
+DINO-HEAL 26.66+1.66 50.38+0.21 36.15+1.12
VideoLLaMA2 87.43 31.67 65.12
+DINO-HEAL 89.19+1.76 31.63-0.04 66.17+1.05

Table 4. Performance comparison of models on scene transition
hallucination (STH), with and without DINO-HEAL. We assign a
weight of 0.6 to the classification task and 0.4 to the description
task. Improvements from DINO-HEAL are shown as subscripts.
Bold numbers denote the best performance applying DINO-HEAL.

the ACH category require MLLMs to discern between se-
mantically similar actions, posing a significant challenge
for accurate interpretation. None of the models could pre-
dict both pairs accurately, highlighting the complexity of
the ACH task. Moreover, Table 8 details the description
scores for each example. These examples demonstrate that
locations highly relevant to the ground truth achieve high
scores. For instance, the phrase “in a swimming pool” ex-
hibits strong semantic description similarity with “pool” or
“a swimming pool,” while “in a bathtub” aligns well with
“the bathtub”. Conversely, locations with differing seman-
tic descriptions or inaccurate interpretations receive lower
description scores. For example, “in a swimming pool” has
limited similarity to descriptions such as “indoor bathroom”
or “indoor pool,” and “in a bathtub” similarly diverges from
“indoor bathroom”. These results highlight the importance of
semantic alignment in achieving accurate description scores.



DINO-HEAL Example, Action Hallucination

Clip 1

Clip 2

Question 1 Is the primary action in the video mixing the ingredients?
Question 2 Is the primary action in the video watching the oven?

Ground Answer for Question 1 with Clip 1: Yes.
Truth Answer for Question 1 with Clip 2: No.

Answer for Question 2 with Clip 1: No.
Answer for Question 2 with Clip 2: Yes.

Video-
ChatGPT

Answer for Question 1 with Clip 1: Yes, the primary action in the video is mixing the ingredients.
Answer for Question 1 with Clip 2: Yes, the primary action in the video is mixing the ingredients.
Answer for Question 2 with Clip 1: No. The man and the child are making cookies in the kitchen.
Answer for Question 2 with Clip 2: No.

Video-
ChatGPT
+ DINO-HEAL

Answer for Question 1 with Clip 1: Yes.
Answer for Question 1 with Clip 2: No.
Answer for Question 2 with Clip 1: No.
Answer for Question 2 with Clip 2: Yes.

Video-LLaVA Answer for Question 1 with Clip 1: Yes.
Answer for Question 1 with Clip 2: Yes.
Answer for Question 2 with Clip 1: Yes.
Answer for Question 2 with Clip 2: Yes.

Video-LLaVA
+ DINO-HEAL

Answer for Question 1 with Clip 1: Yes.
Answer for Question 1 with Clip 2: No.
Answer for Question 2 with Clip 1: No.
Answer for Question 2 with Clip 2: Yes.

VideoLLaMA2 Answer for Question 1 with Clip 1: Yes.
Answer for Question 1 with Clip 2: Yes.
Answer for Question 2 with Clip 1: No.
Answer for Question 2 with Clip 2: Yes.

VideoLLaMA2
+ DINO-HEAL

Answer for Question 1 with Clip 1: Yes.
Answer for Question 1 with Clip 2: No.
Answer for Question 2 with Clip 1: No.
Answer for Question 2 with Clip 2: Yes.

Table 5. An example of the action hallucination category of VIDHALLUC dataset with and without DINO-HEAL. Green text indicates
correct answers, and red text indicates incorrect answers.



DINO-HEAL Example, Temporal Sequence Hallucination

Question Below are two actions in the video:
Action A. gutting a fish
Action B. starting a fire
Sort these two actions in the order they occur in the video, and return which action happen before
which one. For example, ‘Action A before Action B’ or ‘Action B before Action A’. If you only
detect one action of these two in the video, return that action.

Ground Truth BA.

Video-ChatGPT In the video, the man is seen gutting a fish and starting a fire. The order of these two actions is not
clear, as they both occur simultaneously.

Video-ChatGPT
+ DINO-HEAL

In the video, the man starts a fire by striking a match on a piece of wood. After that, he goes to the
beach and starts gutting a fish.

Video-LLaVA Action B. starting a fire.

Video-LLaVA
+ DINO-HEAL

Action B happens before Action A.

VideoLLaMA2 I only detect one action in the video, which is Action B: starting a fire.

VideoLLaMA2
+ DINO-HEAL

Action B. starting a fire happens before Action A. gutting a fish.

ShareGPT4Video Answer: ’Action B happens before Action A’

ShareGPT4Video
+ DINO-HEAL

Answer: ’Action B happens before Action A’

VILA1.5 Action B. starting a fire happens before Action A. gutting a fish.

VILA1.5
+ DINO-HEAL

Action B. starting a fire happens before Action A. gutting a fish.

Table 6. An example from the temporal sequence hallucination category of VIDHALLUC dataset with and without DINO-HEAL. Green text
indicates correct answers, and red text indicates incorrect answers.



VIDHALLUC Example, Action Hallucination

Clip 1

Clip 2

Question 1 Is ironing wax on the ski the main activity in the video?
Question 2 Is the primary action in the video skiing?

Ground Answer for Question 1 with Clip 1: No.
Truth Answer for Question 1 with Clip 2: Yes.

Answer for Question 2 with Clip 1: Yes.
Answer for Question 2 with Clip 2: No.

Chat-Univi [9] Answer for Question 1 with Clip 1: No, the main activity in the video is skiing down a snowy slope.
Answer for Question 1 with Clip 2: No, the main activity in the video is not ironing wax on the ski.
The video showcases a person using a variety of tools and techniques to create snowboards.
Answer for Question 2 with Clip 1: Yes, the primary action in the video is skiing.
Answer for Question 2 with Clip 2: Yes, the primary action in the video is skiing.

PLLaVA [20] Answer for Question 1 with Clip 1: Yes.
Answer for Question 1 with Clip 2: Yes.
Answer for Question 2 with Clip 1: Yes.
Answer for Question 2 with Clip 2: Yes.

Video- Answer for Question 1 with Clip 1: Yes, the main activity in the video is ironing wax on the ski.
ChatGPT [12] Answer for Question 1 with Clip 2: No, the main activity in the video is not ironing wax on the ski.

The video shows a man using a machine to scrape wood.
Answer for Question 2 with Clip 1: No, the primary action in the video is not skiing.
Answer for Question 2 with Clip 2: No, the primary action in the video is not skiing. The video
shows a man working on a piece of wood with a tool.

LLaVA-NeXT-
Video [23]

Answer for Question 1 with Clip 1: Yes.
Answer for Question 1 with Clip 2: Yes.
Answer for Question 2 with Clip 1: Yes.
Answer for Question 2 with Clip 2: Yes.

Table 7. An example from the action hallucination category of VIDHALLUC dataset. Green text indicates correct answers, and red text
indicates incorrect answers.



VIDHALLUC Example, Temporal Sequence Hallucination

Question Below are two actions in the video:
Action A. unloading shingles onto the roof
Action B. removing old shingles
Sort these two actions in the order they occur in the video, and return which action happens before
which one. For example, ‘Action A before Action B’ or ‘Action B before Action A’. If you detect
only one of the two actions in the video, return that action.

Ground Truth AB.

LLaVA-NeXT-
Video [23]

Action B. removing old shingles.

Chat-UniVi [9] Based on the video, Action B (removing old shingles) occurs before Action A (unloading shingles
onto the roof).

Video-LLaVA [10] Action B. removing old shingles happens before Action A. unloading shingles onto the roof.

PLLaVA [20] Action B. removing old shingles.

Gemini-1.5-Pro [18] The order of actions is BA:
1. **B. removing old shingles:** A person is shown using a shovel to remove old shingles from the
roof.
2. **A. unloading shingles onto the roof:** A crane is used to lift new shingles onto the roof.

GPT-4o [1] BA.

Video-ChatGPT [12] In the video, the person is first seen unloading shingles onto the roof, and then they are seen removing
old shingles. The order in which these actions occur is unloading shingles onto the roof first,
followed by removing old shingles.

ShareGPT4Video [2] Answer: ‘Action A happens before Action B’.

VideoLLaMA2 [4] Action A. unloading shingles onto the roof happens before Action B. removing old shingles.

VILA1.5 [11] Action B. removing old shingles happens before Action A. unloading shingles onto the roof.

Table 8. An example from the temporal sequence hallucination category of the VIDHALLUC dataset. Green text indicates correct answers,
and red text indicates incorrect answers.



VIDHALLUC Example, Scene Transition Hallucination

Question A scene change is defined as a significant transition in the overall environment or location within the
video. This means a change from one distinct setting to another, such as moving from a kitchen to
a living room or from indoors to outdoors. Watch the given video and determine if a scene change
occurs. If there is a scene change, respond in the format: ‘Scene change: Yes, Locations: from
[location1] to [location2].’ If no change occurs, respond: ‘Scene change: No, Locations: None’.

Ground Truth Scene change: Yes; Locations: from in a swimming pool to in a bathtub.

Video-ChatGPT [12] Scene change: No; Locations: None.
Scoredesc1 = 0, Scoredesc2 = 0

LLaVA-NeXT-
Video [23]

Scene change: Yes; Locations: from pool to bathtub.
Scoredesc1 = 0.727, Scoredesc2 = 0.892

Chat-UniVi [9] Scene change: Yes; Locations: from indoor pool to outdoor pool.
Scoredesc1 = 0.514, Scoredesc2 = 0

Video-LLaVA [10] Scene change: Yes; Locations: from the pool to the bathtub.
Scoredesc1 = 0.862, Scoredesc2 = 0.961

PLLaVA [20] Scene change: Yes; Locations: from indoor bathroom to indoor bathroom.
Scoredesc1 = 0, Scoredesc2 = 0.266

ShareGPT4Video [2] Scene change: No; Locations: None.
Scoredesc1 = 0, Scoredesc2 = 0

VideoLLaMA2 [4] Scene change: Yes; Locations: from pool to bathtub.
Scoredesc1 = 0.727, Scoredesc2 = 0.892

VILA1.5 [11] Scene change: Yes; Locations: from [location1] to [location2].
Scoredesc1 = 0, Scoredesc2 = 0

Gemini-1.5-Pro [18] Scene change: Yes; Locations: from pool to bathtub.
Scoredesc1 = 0.727, Scoredesc2 = 0.892

GPT-4o [1] Scene change: Yes; Locations: from a swimming pool to a bathtub.
Scoredesc1 = 0.941, Scoredesc2 = 0.946

Table 9. An example from the scene transition hallucination category of the VIDHALLUC dataset. Green text indicates correct answers, and
red text indicates incorrect answers. Each model’s description performance is evaluated using two scores: Scoredesc1 and Scoredesc2, derived
from Equation 4. These scores correspond to the model’s ability to describe the two distinct scenes in the video accurately. The model’s
overall Scoredesc2 is computed as the average of these two scores.
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