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1. The Motivation in Details

Fluorescence microscopy (FM) is a powerful tool for
studying cellular processes by using fluorescent markers to
label components like membranes, nuclei, and proteins, en-
abling detailed visualization of cell structures, functions,
and dynamics. It provides insights into processes such
as cell signaling, gene expression, and tissue organization
while revealing critical features like shape, volume, and
subcellular localization. By tracking these features over
time, FM uncovers dynamic processes such as cell division,
migration, and apoptosis, as well as cellular heterogene-
ity. However, achieving continuous, high-quality signals
for precise observation and analysis remains a challenge,
especially in complex, multi-cellular contexts where rapid
divisions and small cell sizes blur fluorescence signals and
reduce resolution.

The limitations in 3D fluorescence imaging primarily
stem from the inherent characteristics of the imaging mech-
anism. First, due to the optical diffraction limit, the system
achieves higher resolution in the lateral (XY) plane but has
lower resolution along the axial (Z) axis. This anisotropic
resolution difference is caused by the physical properties
of the optical system: the focusing ability is weaker along
the axial direction, making it challenging to capture the
same level of detail in depth as in the lateral plane. Ad-
ditionally, the uneven noise distribution is related to how
light propagates through the sample. In deeper regions
along the Z-axis, light undergoes more absorption and scat-
tering, causing signal attenuation and resulting in a lower
signal-to-noise ratio (SNR), which in turn increases noise
in these deeper layers. Variations in tissue density and op-
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tical thickness further impact light penetration, leading to
higher signal quality near the sample surface and more in-
terference in deeper layers. These optical limitations affect
the overall quality of 3D fluorescence imaging, particularly
in deeper structures, where they lead to detail loss and in-
creased noise. What’s more, ground truth (GT) is hard to
obtain. Without GT data for deep structures, accurately re-
solving these regions becomes even more challenging, as
there is no reference for training models to reconstruct high-
fidelity images. These optical limitations, combined with
the lack of GT, affect the overall quality of 3D fluorescence
imaging, particularly in deeper structures, leading to detail
loss and increased noise.

Recent advances in deep learning have demonstrated the
potential of generative models to enhance FM imaging, with
diffusion models emerging as particularly effective for both
denoising and super-resolution tasks, as described in the
section of related work. Diffusion models are probabilis-
tic generative approaches that learn to reverse a stochastic
noise addition process, allowing them to iteratively refine
noisy images. This is especially well-suited for FM imag-
ing, where noise is pervasive, as these models can system-
atically model and remove noise while preserving biologi-
cally relevant details.

Our work contributes to this growing field by devel-
oping a algorithm that facilitates the ambiguous and low-
resolution fluorescence images clear and visible. VTCD
has been applied to study a variety of biological systems,
providing insights into factors like cell signaling pathways,
intercellular interactions, and the impact of genetic or envi-
ronmental perturbations.

2. Additional Experimental Demonstrations
2.1. The 2D Quantitative Demonstration

To further validate the effectiveness of our cycle-
consistent diffusion architecture, we show more details in
the experiments focusing on 2D quantitative comparisons.
The results on the XY, YZ, and XZ planes are presented in
Figs. S1, comparing our VTCD approach with other meth-
ods, including CycleGAN, DSAR, and Neuroclear. Our
method consistently outperformed these baselines across
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Fig. S1. The qualitative comparisons on fluorescence images between multiple methods (de-noising and super-resolution).

different cell stages (200, 530, and 580 cells), demonstrat-
ing enhanced super-resolution (SR) and de-noising capabil-
ities. The results show significant noise reduction and a re-
alistic enhancement of cell membrane outlines, without in-
troducing excessive or artificial details. Notably, our VTCD
approach performed well even in the XZ plane, where other
methods, such as VTCD+IPG, tended to overemphasize
certain features, leading to unrealistic details.

Enlarged viewings are available for detailed comparisons
(Fig. 4 and Fig. S2), where improvements in membrane
outlines and overall image clarity are apparent. The VTCD
method effectively preserves cellular morphology while re-
ducing noise, ensuring that essential structural features are
retained. This capability is especially crucial for capturing
accurate biological information in fluorescence microscopy
data.

2.2. The 3D Quantitative Demonstration

We also show a series of 3D quantitative experimental
results on dataset NorefZ-2 to further demonstrate the ef-
fectiveness of our approach. The comparisons were made
between the original noisy images, the outputs from pre-
vious methods, and VTCD model (Fig. 3). As seen in the
figure, our method was able to reduce noise and restore finer
structural details, resulting in processed images’ qualities.

In Fig. S3, we provide another set of comparisons high-
lighting the full workflow from the microscopy equipment
(shown on the left) to the processed images. The visual im-
provements in 3D structural accuracy are evident, with our
model achieving clearer outlines and a better representation
of the cell boundaries. Unlike other methods that tend to in-
troduce unwanted artifacts during de-noising or resolution
enhancement, our VTCD model provides a consistent bal-



Fig. S2. In details, the qualitative comparisons on fluorescence images between multiple methods (de-noising and super-resolution).

ance between noise reduction and cell structure preserva-
tion.

The rendered 3D outputs demonstrate the efficiency of
our cycle-consistent diffusion approach in enhancing flu-
orescence microscopy data. By reducing the noise while
retaining essential morphological features, our method en-
ables more accurate biological interpretation, which is cru-
cial for studying developmental processes at the cellular
level. This makes VTCD a robust tool for handling complex
3D fluorescence microscopy data, ensuring high-resolution
results even in challenging imaging conditions.

Fig. S3. The 3D qualitative comparisons on fluorescence images
of original images, previous method result and our method output.

3. Methodology Supplementary Descriptions

To help reverse the cell structures in ambiguous FM im-
ages and utilize the VTBC’s generalization and accuracy,



we designed a integrated loss function and train our method
in a progressive way.

The training process for our dual cycle-consistent diffu-
sion model, specifically designed for de-noising and super-
resolution (SR) in 3D fluorescence microscopy, is struc-
tured to address both noise suppression and resolution en-
hancement. In each iteration, we begin with a sequential
training approach where the model is first trained on de-
noising tasks, focusing on accurately removing noise while
preserving critical features in low-resolution images. In this
phase, the model learns noise patterns and low-frequency
details, forming a solid foundation for subsequent SR tasks.
After stabilizing the de-noising phase, we proceed to train
the model for SR, where it learns to recover high-frequency
details from downsampled images. Once both tasks are
effectively learned independently, we enable dual cycle-
consistent training, in which de-noising and SR tasks are
jointly optimized. The model employs diffusion-based sam-
pling to iteratively improve image quality by propagating
high-quality features across cycles. We also incorporate
progressive up-scaling and multi-scale feature discrimina-
tors to ensure the SR network captures spatial details while
maintaining fidelity across scales, making it particularly ef-
fective for 3D fluorescence microscopy data.

To train our VTCD, the basic adversarial losses and the
cycle consistent losses are first used to enable the cycle
training. With the diffusion forward stage formulated as
the targeted slicing of 3D cell volume, the diffusion loss is
integrated into the cycle consistency loss by changing the
form of the generated process. By the way, to control the
generation trajectory, another two losses are formed in the
training of the denoising and SR. The total loss is formu-
lated as follows:

LVTDC = LGA

LR → HR + LGB

HR → LR + LDe-noise
xt→x̂t

+ LSR
XZ/YZ→XY

(1)
Adversarial loss LGA

LR → HR and LGB

HR → LR encourages re-
alistic outputs, enabling the model to produce clean, high-
resolution images that are indistinguishable from high-
quality fluorescence images. Cycle consistent loss for de-
noising LDe-noise

xt→x̂t
is consist of LDe-noise

xt→x0
+ LTV (Î), while

LTV (Î) is defined as:

LTV (Î) =
1
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∑
i,j,k

√
(Îi,j+1,k − Îi,j,k)2 + (Îi+1,j,k − Îi,j,k)2

(2)
LSR

XZ/YZ→XY is the cycle consistent loss for SR conditioned
with Lcontent(Î , I;ϕ, l). In the reverse process of diffusion,
to control the generation trajectory, the following losses
are used to formulate the conditioning diffusion model.
Lcontent is used in the latent space diffusion model to ac-

curately transform/diffuse the Z-axis images to clear levels
and is defined as:

Lcontent(Î , I;ϕ, l) =
1
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(l)
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2)

(3)
To ensure optimal balance, we dynamically adjust loss
weights as the model transitions from denoising-focused to
SR-focused stages, refining the fidelity and clarity of the
final super-resolved, de-noised outputs.

Code and Data
The code is deposited on

https://github.com/temporarysharing1688/VTCD and
the data is available upon request or after revision.
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