
WF-VAE: Enhancing Video VAE by Wavelet-Driven Energy Flow for Latent
Video Diffusion Model

Supplementary Material

The supplementary materials include further details as
follows:
• We present additional notations in Sec. 1.
• We analyze subband energy and entropy of wavelet trans-

form in Sec. 2, which further validates our motivation.
• We present our training parameters in Sec. 3
• We present the derivation of the Causal Cache formula-

tion in Sec. 4.
• We provide additional experimental results in Sec. 5.

1. Notations
The notations and their descriptions in the paper are shown
in Tab. 1.

Notations Descriptions

WT (·) Wavelet transform
IWT (·) Inverse wavelet transform
S
(l)
□□□ Wavelet subband within layer l, where □□□

specifies the type of filtering (high or low pass)
applied in three dimensions.

W(l) The set of all subbands within layer l

Table 1. Notations symbols and their descriptions.

2. Wavelet Subband Analysis
We analyze the energy and entropy distributions across the
subbands obtained after wavelet transform. As illustrated
in Fig. 1b, the energy and entropy of the video are pri-
marily concentrated in the hhh low-frequency subband.
This concentration suggests that low-frequency components
carry more significant information and necessitate lower
compression rates to ensure superior reconstruction perfor-
mance. This observation further validates the rationale be-
hind our proposed approach.

3. Training Details
The training hyperaparameters are shown in Tab. 2.

4. Derivation of Causal Cache
Let us define a convolution with sliding window index n ∈
N0 and chunk index m ∈ N0. Given a convolutional stride s
and kernel size k, as shown in Fig. 3, the starting and ending
frame indices for each sliding window are:

twindow,start(n) = ns, (1)
twindow,end(n) = twindow,start(n) + k − 1. (2)

Subband hhh Subband hhg Subband hgh Subband hgg
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(a) Visualization of the eight subbands obtained after wavelet transform of
the video.
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(b) Energy and entropy of each subband.

Figure 1. Visualization of the subbands and their respective energy
and entropy.

Parameter Setting

Stage I - 800k step

Learning Rate 1e-5
Total Batch Size 8

Peceptual(LPIPS) Weight 1.0
WL Loss Weight (λWL) 0.1

KL Weight (λKL) 1e-6
Resolution 256×256

Num Frames 25
EMA Decay 0.999

Stage II - 200k step

Num Frames 49

Stage III - 200k step

Peceptual(LPIPS) Weight 0.1

Table 2. Training hyperparameters across three stages.

For chunk boundaries, we define:

tchunk,end(m) = k − 1 +mTchunk (3)

where Tchunk denotes the chunk size. For a given chunk
index m, the maximum sliding index nmax(m) is deter-
mined by the constraint twindow,end(n) ≥ tchunk,end(m):



Figure 2. Qualitative experiments in video generation model pretraining. It demonstrates that WF-VAE can be effectively applied to
the training of downstream diffusion models.

Method 480P 720P

PSNR↑ LPIPS↓ rFVD↓ SSIM↑ PSNR↑ LPIPS↓ rFVD↓ SSIM↑
4 latent channels

WF-VAE-L 30.56 0.0595 55.65 0.8713 31.12 0.0617 49.93 0.8799
Allegro 30.06 0.0689 105.70 0.8673 30.78 0.0668 86.85 0.8795

16 latent channels

WF-VAE-L 34.28 0.0275 20.43 0.9347 34.82 0.0294 19.27 0.9384
CogVideoX 33.85 0.0317 32.85 0.9319 34.24 0.0331 24.82 0.9364

Table 3. Quantitative evaluation on Inter4K dataset, using 65 frames.

nmax(m) =

⌊
mTchunk

s
+ 1

⌋
. (4)

Consequently, the required cache size Tcache(m) for
chunk m is:

Tcache(m) = tchunk,end(m)− twindow,start(nmax(m))

+1 = mTchunk + k −
⌊
mTchunk

s
+ 1

⌋
s

(5)

5. Additional Experiments
Evaluation Across Different Resolutions. To validate
the robustness of WF-VAE across different resolutions,
we conduct metric evaluations on the Inter4K dataset at
480P and 720P resolutions. As shown in Tab. 3, WF-
VAE demonstrates competitive performance in reconstruc-
tion tasks across varying resolutions.
Validation in Diffusion Model Pretraining. To verify the
applicability of WF-VAE to LVDM, we select Open-Sora
Plan for pretraining on large-scale datasets with a resolution
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Figure 3. Illustration of Causal Cache with parameters k=3, s=2,
and chunk size Tchunk=4.

of 512×288 pixels. Qualitative experiments, as illustrated
in 2, demonstrate promising generative performance.
More Qualitative Evaluations. To further demonstrate the
capability of our model in achieving state-of-the-art recon-
struction performance with low computational cost, we con-
duct additional qualitative evaluations against the represen-
tative VAE, CogVideoX. Refer to Fig. 4 and supplementary
material for more video examples.
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Figure 4. Qualitative experiments in high motion videos. We include more 480P comparison videos in the supplementary materials.
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