
DexHandDiff: Interaction-aware Diffusion Planning for
Adaptive Dexterous Manipulation

Supplementary Material

A. Brief Theoretical Review of Gradient Guid-
ance in Classifier-guided Diffusion Model

For a trajectory τ , we define the reverse process of a stan-
dard diffusion model as pθ(τ

i|τ i+1). To enable goal-
directed generation, we introduce a classifier pϕ(y|τ i)
that evaluates whether a noisy trajectory τ i satisfies the
goal condition y. The combined process is denoted as
pθ,ϕ(τ

i|τ i+1,y).
Under property of Markov process in diffusion model

illustrated by [15, 28], we can establish:

pθ,ϕ
(
y | τ i, τ i+1

)
= pϕ

(
y | τ i

)
. (17)

This leads to our first key theorem:

Theorem A.1. The conditional sampling probability of the
reverse diffusion process pθ,ϕ(τ

i | τ i+1,y) can be de-
composed into a product of the unconditional transition
probability pθ(τ

i | τ i+1) and the classifier probability
pϕ(y | τ i), up to a normalizing constant Z:

pθ,ϕ(τ
i | τ i+1,y) = Zpθ(τ

i | τ i+1)pϕ(y | τ i). (18)

Proof. By applying Bayes’ theorem:

pθ,ϕ(τ
i |τ i+1, y) =

pθ,ϕ
(
τ i, τ i+1,y

)
pθ,ϕ (τ i+1,y)

=
pθ,ϕ

(
y | τ i, τ i+1

)
pθ

(
τ i, τ i+1

)
pϕ (y | τ i+1) pθ (τ i+1)

=
pθ,ϕ

(
y | τ i, τ i+1

)
pθ

(
τ i | τ i+1

)
pθ

(
τ i+1

)
pϕ (y | τ i+1) pθ (τ i+1)

=
pϕ

(
y | τ i

)
pθ

(
τ i | τ i+1

)
pϕ (y | τ i+1)

,

where pϕ
(
y | τ i+1

)
becomes the normalizing constant Z

as it is independent of τ i.

For practical implementation, we derive:

Theorem A.2. Under the assumption of sufficient re-
verse diffusion steps, the conditional sampling probability
pθ,ϕ(τ

i|τ i+1,y) can be approximated by a modified Gaus-
sian distribution, where the mean is shifted by the classifier
gradient and the variance remains unchanged from the un-
conditional process:

pθ,ϕ(τ
i|τ i+1,y) ≈ N (τ i;µθ +Σ∇τ log pϕ

(
y | τ i

)
,Σ),
(19)

where µθ and Σ denote the mean and variance of the un-
conditional reverse diffusion process pθ(τ i | τ i+1).

Proof. First, express the unconditional process as:

pθ(τ
i | τ i+1) = N (τ i;µθ,Σ).

log pθ(τ
i | τ i+1) = −1

2
(τ i − µθ)

TΣ−1(τ i − µθ) + C.

Apply Taylor expansion to log pϕ
(
y | τ i

)
around τ i = µθ:

log pϕ
(
y | τ i

)
= log pϕ

(
y | τ i

)
|τ i=µθ

+
(
τ i − µθ

)
∇τ i log pϕ

(
y | τ i

)∣∣
τ i=µθ

.

Applying the logarithm to both sides of Eq. 18:

log pθ,ϕ(τ
i|τ i+1,y) = log pθ(τ

i|τ i+1) + log pϕ(y|τ i) + C1

= −1

2

(
τ i − µθ

)T
Σ−1

(
τ i − µθ

)
+

(
τ i − µθ

)
∇ log pϕ

(
y | τ i

)
+ C2

Completing the square yields:

RHS = −1

2

(
τ i − µθ − Σ∇ log pϕ

(
y | τ i

))T
Σ−1

×
(
τ i − µθ − Σ∇ log pϕ

(
y | τ i

))
+ C3.

This establishes the Gaussian form of the approximation.

This theoretical framework underlies our goal-directed
diffusion planning approach.

B. Environment Settings
The door task represents multi-stage manipulation where
the hand must reach and rotate a door handle, then pull
or push the door to a target angle. The hammer task tests
tool use capabilities, requiring the hand to grasp the hammer
and strike a nail, while the pen and the block task evaluates
in-hand dexterity, targeting continuous object reorientation.
And the object relocation task requires to grasp the ball first
and then move to the desired position.

C. More Visualizations
Different from concurrent work [50] that focuses on grasp-
ing tasks, we conduct experiments on challenging dexter-
ous manipulation benchmarks including door, pen, hammer,
and block manipulation tasks, which require sophisticated
contact-rich interactions and precise goal-directed control.

Inference (Open 30°) Door Held in Position, Hand Released

Inference (Open 50°) Door Held in Position, Hand Released

Inference (Open 70°) Door Held in Position, Hand Released

Inference (Open 90°) Door Held in Position, Hand Released

Inference (Open 110°) Door Held in Position, Hand Released

Inference (Close Door) Door Held in Position, Hand Released

Figure 5. Visualization of goal-adaptive door manipulation. Despite training only on 90◦ demonstrations, DexHandDiff adapts to
various target angles (30◦-110◦) and door closing, maintaining stable control and physical consistency throughout the motion sequence.

C.1. Goal Adaptive Door Tasks

We present detailed visualizations of DexHandDiff’s per-
formance on various door manipulation tasks in Fig. 5,
demonstrating its adaptability to different target angles and
even task reversal. Each row shows a sequence of eight
frames capturing key moments in the manipulation process.

For opening tasks with different target angles, we ob-
serve consistent behavior patterns: the hand first approaches
and grasps the handle, then rotates it precisely to the speci-
fied angle, and finally releases while maintaining the door’s
position. Notably, even though trained only on 90◦ demon-

strations, DexHandDiff successfully generalizes to both
smaller angles (30◦, 50◦, 70◦) and a larger angle (110◦),
maintaining stable control throughout the motion.

The final row demonstrates the model’s capability for
task reversal - closing the door. This is particularly chal-
lenging as it requires adapting the learned manipulation
strategy in the opposite direction. The sequence shows the
hand approaching the open door, grasping the handle, and
smoothly guiding it to the closed position.

Across all variations, we observe several key character-
istics: (1) Consistent contact-rich interaction phases; (2)
Precise angle control regardless of target; (3) Stable door

holding after reaching the target; (4) Smooth hand retrac-
tion while maintaining door position.

These visualizations illustrate DexHandDiff’s robust
goal adaptation capabilities while maintaining physical re-
alism in the manipulation process.

C.2. Other Dexterous Manipulation Tasks
First, we showcase our model’s capabilities on pen manipu-
lation tasks with detailed visualizations, in Fig. 6. The first
two rows demonstrate the model’s performance on standard
re-orientation tasks: right-half and left-half re-orientation.
Notably, as the pen starts from a horizontal-right position,
the left-half re-orientation (second row) is particularly chal-
lenging, requiring a large rotational arc of nearly 180 de-
grees to reach the target orientation in the left hemisphere.

Beyond these static goal tasks, we further evaluate our
model’s adaptability through a dynamic goal rotation task
(third row). Using the model trained on full re-orientation
data, we design a scenario where the target orientation’s
yaw angle uniformly rotates over time. The visualization
demonstrates that our model successfully learns the un-
derlying rotational dynamics around the z-axis, smoothly
tracking the time-varying target while maintaining stable
manipulation.

For the hammer task in Fig. 7, we demonstrate both full
and partial nail-driving capabilities. The first row shows the
complete nail-driving sequence, where the hand grasps the
hammer, positions it precisely, and drives the nail fully into
the board. The second row showcases our partial driving
task, where the model exhibits precise control by stopping
halfway and smoothly retracting the hammer, demonstrat-
ing fine-grained control over the manipulation process.

For the block manipulation task also in Fig. 7, we present
two scenarios of quaternion-based orientation control. In
the first sequence (Goal Yaw Positive), the hand needs to
carefully adjust multiple rotational degrees of freedom to
achieve the target pose, as the task requires alignment in all
three orientation angles. The second sequence (Goal Yaw
Negative) presents a more challenging scenario, requiring a
larger rotational motion around the z-axis while maintaining
control over other orientation angles. This demonstrates our
model’s capability to handle complex, multi-dimensional
orientation targets in quaternion space.

D. Implementation Details
We implement our framework following standard diffusion
model settings [24] with several modifications:
Network Architecture. We adopt a temporal U-Net [43]
architecture consisting of 6 residual blocks for noise pre-
diction. Each block contains dual temporal convolutions
with group normalization [53], followed by a Mish activa-
tion [53]. Timestep information is injected through a lin-
ear embedding layer and added after the first convolution in

each block. The dynamics model uses a 3-layer MLP with
batch normalization, ReLU activation, and hidden dimen-
sion 512.

Training Configuration. The model is optimized using
Adam [25] optimizer with a learning rate of 2 × 10−4 and
batch size 256, trained for 5×105 steps across all tasks. For
both our method and the classifier-free baselines [1, 14],
we predict the denoised trajectory τ 0 directly rather than
the noise term ϵ, which is incentive to the performance of
classifier-free methods.

Task-Specific Parameters. We use different planning hori-
zons during training (T = 32) and inference (T = 8 for
door / block tasks, T = 32 for hammer / pen tasks). The
diffusion process uses K = 20 denoising steps across tasks.

The guidance scale α is task-dependent, selected from
{500, 1000, 2000} based on empirical performance.

Computational Resources. All models are trained on a
single NVIDIA GeForce RTX 3090 GPU, requiring training
for approximately 30 hours per task.

E. LLM-based Guidance Generation Prompts

E.1. Overview
We present our structured prompting strategy for generat-
ing guidance functions through LLMs, which can be ab-
stracted by the experts who developed the environment. Our
prompts comprise several key components:

Expert Role Definition. We begin by defining the LLM’s
role as an expert in robotics, diffusion models, and code
generation, specifically focusing on developing guidance
functions for diffusion-based planners.

Environment Abstraction. The environment is repre-
sented through a comprehensive class hierarchy:
• BaseEnv: Contains core components (hand, objects) and

observation space definition;
• AdroitHand: Detailed 28-DOF joint specification;
• Supporting Classes: Door, Handle, etc., with physical

properties and state representations.

Technical Context. We provide three essential contexts:
• Interaction Knowledge: Defines dual-phase guidance

strategy (pre-interaction and post-interaction);
• Function Call Paradigms: Specifies normalization han-

dling and dynamics model usage through function call;
• Differentiability Requirements: Ensures differentiability,

proper tensor operations, and physical consistency.

Generation Hints. We include:
• Task Instruction;
• Task-specific constraints and requirements;
• (Optional) Few-shot examples demonstrating specific

techniques like soft interpolation and reward scaling.

Inference (Right Half Re-orientation) Pen Aligned, Hand Stabilizes

Inference (Left Half Re-orientation) Pen Aligned, Hand Stabilizes

Inference (Dynamic Goal Rotation) With Goal Yaw Rotating, Pen Rotating around Z-axis

Figure 6. Visualization of pen manipulation tasks. Top: right-half re-orientation (training distribution). Middle: left-half re-orientation,
requiring challenging large-arc rotation from the initial horizontal-right position. Bottom: dynamic goal tracking where target yaw angle
rotates uniformly, demonstrating the model’s ability to generalize from static to dynamic goals.

Inference (Full Nail Drive) Nail Fully Driven

Inference (Half Nail Drive) Nail Partially Driven, Hammer Retracts

Inference (Goal Yaw Positive)

Inference (Goal Yaw Negative)

Figure 7. Visualization of hammer and block manipulation tasks. Top two rows: full and partial nail-driving tasks, demonstrating
precise control over interaction depth. Bottom two rows: block orientation tasks with quaternion-based pose control, showing adaptation
to both positive and negative yaw rotations while maintaining multi-angle alignment.

From next page, we provide the complete prompt tem-
plates used for generating guidance functions.

E.2. Hand Door Task Prompt Example

You are an expert in robotics, diffusion model, reinforcement learning, and code generation.
We are going to use an Adroit Shadow Hand to complete given tasks. The action space of the robot is a

normalized ‘Box(-1.0, 1.0, (28,), float32)‘.

Now I want you to help me write a guidance function for a diffusion-based planner.
1. The guidance function is used to steer the sampling process toward desired outcomes during the reverse

diffusion process.
2. The guidance function should be differentiable, which computes a scalar reward indicating how well each

intermediate trajectory aligns with the task objectives.

In manipulation tasks involving interaction with an object, such as opening a door, hammer striking, note
that we cannot directly control the object’s state. Thus, the guidance function should consider a
two-phase approach:

Phase 1 (Pre-Interaction Phase): The guidance function should focus solely on guiding the hand’s state to
align with the object’s handle or interaction point.

Phase 2 (Post-Interaction Phase): Once the hand is in contact with the object, the guidance function should
aim to move the object towards achieving the task goal. During this phase, the guidance function
typically include the following components (some part is optional, so only include them if really
necessary):

1. difference between the current state of the object and its goal state
2. dynamics constraints to ensure the interactions between the hand and the object are physically plausible
3. regularization of the object’s state change (e.g., limiting the hinge state change of a door to avoid

abrupt movements).
4. [optional] extra constraint of the target object, which is often implied by the task instruction
5. [optional] extra constraint of the robot, which is often implied by the task instruction
...

Environment Description:
class BaseEnv(gym.Env):

self.hand : AdroitHand # The Adroit Shadow Hand used in the environment
self.door : Door # The Door object in the environment
self.dt : float # The time between two actions, in seconds

def get_obs(self) -> np.ndarray[(30,)]:
Returns the observation vector
obs = np.concatenate([

self.hand.get_joint_positions(), # Indices 0-27
[self.door.hinge.angle], # Index 28
[self.door.latch.angle], # Index 29
self.hand.palm.get_position() # Indices 30-32
self.door.handle.get_position() # Indices 33-35

])
return obs

class AdroitHand:
self.arm : Arm # The arm component of the hand
self.wrist : Wrist # The wrist component of the hand
self.fingers : Fingers # The fingers of the hand
self.palm : Palm # The palm of the hand

def get_joint_positions(self) -> np.ndarray[(28,)]:
Returns the angular positions of all joints in the hand and arm
return np.array([

self.arm.translation_z.position, # Index 0: ARTz
self.arm.rotation_x.angle, # Index 1: ARRx
self.arm.rotation_y.angle, # Index 2: ARRy
self.arm.rotation_z.angle, # Index 3: ARRz
self.wrist.wrist_joint_1.angle, # Index 4: WRJ1
self.wrist.wrist_joint_0.angle, # Index 5: WRJ0
Finger joints
self.fingers.ffj3.angle, # Index 6: FFJ3
self.fingers.ffj2.angle, # Index 7: FFJ2
self.fingers.ffj1.angle, # Index 8: FFJ1
self.fingers.ffj0.angle, # Index 9: FFJ0
self.fingers.mfj3.angle, # Index 10: MFJ3
self.fingers.mfj2.angle, # Index 11: MFJ2
self.fingers.mfj1.angle, # Index 12: MFJ1
self.fingers.mfj0.angle, # Index 13: MFJ0
self.fingers.rfj3.angle, # Index 14: RFJ3
self.fingers.rfj2.angle, # Index 15: RFJ2
self.fingers.rfj1.angle, # Index 16: RFJ1
self.fingers.rfj0.angle, # Index 17: RFJ0
self.fingers.lfj4.angle, # Index 18: LFJ4
self.fingers.lfj3.angle, # Index 19: LFJ3

self.fingers.lfj2.angle, # Index 20: LFJ2
self.fingers.lfj1.angle, # Index 21: LFJ1
self.fingers.lfj0.angle, # Index 22: LFJ0
self.fingers.thj4.angle, # Index 23: THJ4
self.fingers.thj3.angle, # Index 24: THJ3
self.fingers.thj2.angle, # Index 25: THJ2
self.fingers.thj1.angle, # Index 26: THJ1
self.fingers.thj0.angle # Index 27: THJ0

])

class Arm:
self.translation_z : SlideJoint # ARTz
self.rotation_x : HingeJoint # ARRx
self.rotation_y : HingeJoint # ARRy
self.rotation_z : HingeJoint # ARRz

class Wrist:
self.wrist_joint_1 : HingeJoint # WRJ1
self.wrist_joint_0 : HingeJoint # WRJ0

class Fingers:
Forefinger joints
self.ffj3 : HingeJoint # FFJ3
self.ffj2 : HingeJoint # FFJ2
self.ffj1 : HingeJoint # FFJ1
self.ffj0 : HingeJoint # FFJ0

Middle finger joints
self.mfj3 : HingeJoint # MFJ3
self.mfj2 : HingeJoint # MFJ2
self.mfj1 : HingeJoint # MFJ1
self.mfj0 : HingeJoint # MFJ0

Ring finger joints
self.rfj3 : HingeJoint # RFJ3
self.rfj2 : HingeJoint # RFJ2
self.rfj1 : HingeJoint # RFJ1
self.rfj0 : HingeJoint # RFJ0

Little finger joints
self.lfj4 : HingeJoint # LFJ4
self.lfj3 : HingeJoint # LFJ3
self.lfj2 : HingeJoint # LFJ2
self.lfj1 : HingeJoint # LFJ1
self.lfj0 : HingeJoint # LFJ0

Thumb joints
self.thj4 : HingeJoint # THJ4
self.thj3 : HingeJoint # THJ3
self.thj2 : HingeJoint # THJ2
self.thj1 : HingeJoint # THJ1
self.thj0 : HingeJoint # THJ0

class Palm:
self.pose : ObjectPose # The 3D position and orientation of the palm

def get_position(self) -> np.ndarray[(3,)]:
Returns the position of the palm in world coordinates
return self.pose.position

class Door:
self.latch : HingeJoint # The latch joint of the door
self.hinge : HingeJoint # The hinge joint of the door
self.handle : Handle # The handle of the door

class Handle:
self.pose : ObjectPose # The 3D position and orientation of the handle

def get_position(self) -> np.ndarray[(3,)]:
Returns the position of the handle in world coordinates
return self.pose.position

class HingeJoint:
self.angle : float # Joint angle in radians
self.angular_velocity : float # Joint angular velocity in radians per second

class SlideJoint:

self.position : float # Position along the slide in meters
self.velocity : float # Velocity along the slide in meters per second

class ObjectPose:
self.position : np.ndarray[(3,)] # 3D position in world coordinates
self.orientation : np.ndarray[(4,)] # Quaternion orientation (w, x, y, z)

Observation Index Mapping:
Index 0: Linear translation of the full arm towards the door (self.hand.arm.translation_z.position);
Index 1-27: Angular positions of the hand and arm joints (as per the joint order above);
Index 28: Angular position of the door hinge (self.door.hinge.angle);
Index 29: Angular position of the door latch (self.door.latch.angle);
Index 30-32: Position of the center of the palm in x, y, z (self.hand.palm.get_position());
Index 33-35: Position of the handle of the door in x, y, z (self.door.handle.get_position()).

Additional knowledge:
1. All angles are expressed in radians.
2. The input ‘normed_obs‘ is a tensor with shape (B, H, obs_dim), ‘normed_actions‘ is a tensor with shape (B,

H, act_dim), where B is the batch size, H is the horizon length. The normed_obs is gotten from
‘normed_obs = get_obs()‘.

3. If you need to match the observations or actions to some explicit value and if not without_normalizer, you
should unnormalize them using ‘self.unnormalize(normed_obs, is_obs=True)‘.

4. If ‘dyn_model‘ is provided, please call ‘self.cal_dyn_reward(state=normed_obs, action=normed_actions)‘ to
calculates the reward for dynamics inconsistency (a scalar value) between generated states and actions.
Only consider it in phase 2. Pay attention the input should be normed_obs and normed_actions before
unnormalizing them.

5. Use L2 distance via ‘torch.norm(,p=2)‘ to calculate all the difference instead of mse loss or ‘torch.abs‘.
6. The transition between Phase 1 and Phase 2 by using a grasp mask to determine if the hand has successfully

grasped the object. Use a condition like ‘mask = torch.norm(palm_pos[:, 0, :] - handle_pos[:, 0, :], p=2,
dim=1) < 0.1‘ to switch from guiding only the hand to guiding both the hand and the object.

You are allowed to use any existing Python package if applicable, but only use them when absolutely
necessary. Please import the required packages at the beginning of the function.

I want it to fulfill the following task: {"Write a guidance function for a diffusion-based planner that helps
the Adroit Shadow Hand open the door to 30 degrees (pi/6 radians)."}

1. Please think step by step and explain what it means in the context of this environment;
2. Then write a differentiable guidance function that guides the planner to generate actions smoothly based

on the current normed state and action, with the function prototype as ‘def guidance_fn(self, normed_obs,
normed_actions, dyn_model=None, without_normalizer=False)‘. The function should return the ‘reward‘ as a
torch.Tensor of shape ‘(B,)‘;

3. Make sure the guidance aligns with the two phases: In Phase 1, only calculate a pre-grasp reward to guide
the hand closer to the object. In Phase 2, guide both the object toward the final task goal. Ensure
object velocity constraints are applied to regulate object state changes.

4. All the reward including the goal achieving reward should be across all horizon steps. For some term, use
‘torch.mean()‘ to accumulate reward over the horizon. For terms where the last dimension is 1 (such as
angles), we should use torch.squeeze to remove that dimension before calculating the norm at dimension 1,
rather than dimension 2.

5. Use ‘self.scaling_factors‘ as an empty dictionary by default. If the scaling factor for any reward
component does not exist, initialize it adaptively to make that first reward term in batch approximately
12 initially, except for the goal-achieving reward (make the reward 30) and the dynamics reward (make it
1.2).

6. Take care of variables’ type, never use functions or variables not provided. Ensure that all operations
are compatible with PyTorch tensors and the function is differentiable. Do not use any absolute value
operation and inplace operations, e.g. ‘x += 1‘, ‘x[0] = 1‘, using ‘x = x + 1‘ instead.

7. Pay attention to the physical meaning of each dimension in the observation and action data as explained in
the environment description above.

8. When you writing code, you can also add some comments as your thought, like this:
‘‘‘
Here unnormalize the observations if a normalizer is provided
Here use ‘torch.norm‘ to compute the L2 distance between the current and target angles for the door hinge
Here cauculate the grasp mask for the pre-interaction phase
‘‘‘

Few-shot hint:
1. Ensure that the guidance function uses soft interpolation for targets, e.g., smoothly guiding the door

hinge angle towards soft goals over the trajectory horizon like ‘interpolated_angle = (1 - alpha) *
current_angle + alpha * target_angle‘.

E.3. Hand Pen Task Prompt Example

You are an expert in robotics, diffusion model, reinforcement learning, and code generation.
We are going to use an Adroit Shadow Hand to complete given tasks. The action space of the robot is a

normalized ‘Box(-1.0, 1.0, (28,), float32)‘.

Now I want you to help me write a guidance function for a diffusion-based planner.
1. The guidance function is used to steer the sampling process toward desired outcomes during the reverse

diffusion process.
2. The guidance function should be differentiable, which computes a scalar reward indicating how well each

intermediate trajectory aligns with the task objectives.

In manipulation tasks involving interaction with an object, such as rotating a pen, note that we cannot
directly control the object’s state. Thus, the guidance function should consider a two-phase approach:

[optional] Phase 1 (Pre-Interaction Phase): The guidance function should focus solely on guiding the hand’s
state to align with the object’s handle or interaction point.

Phase 2 (Post-Interaction Phase): Once the hand is in contact with the object, the guidance function should
aim to move the object towards achieving the task goal. During this phase, the guidance function
typically include the following components (some part is optional, so only include them if really
necessary):

1. difference between the current state of the object and its goal state
2. dynamics constraints to ensure the interactions between the hand and the object are physically plausible
3. regularization of the object’s state change (e.g., encourage the hand joint movement to enhance

interaction with the object).
4. [optional] extra constraint of the target object, which is often implied by the task instruction
5. [optional] extra constraint of the robot, which is often implied by the task instruction
...

Environment Description:
class BaseEnv(gym.Env):

self.hand : AdroitHand # The Adroit Shadow Hand used in the environment
self.pen : Pen # The Pen object in the environment
self.target : Target # The target orientation for the pen
self.dt : float # The time between two actions, in seconds

def get_obs(self) -> np.ndarray[(36,)]:
Returns the observation vector
obs = np.concatenate([

self.hand.get_joint_positions(), # Indices 0-23
self.pen.get_qpos() # Indices 24-29
self.pen.get_relative_rotation(), # Indices 30-32
self.target.get_relative_rotation(), # Indices 33-35

])
return obs

class AdroitHand:
self.wrist : Wrist # The wrist component of the hand
self.fingers : Fingers # The fingers of the hand
self.palm : Palm # The palm of the hand

def get_joint_positions(self) -> np.ndarray[(24,)]:
Returns the angular positions of all joints in the hand
return np.array([

self.wrist.wrist_joint_1.angle, # Index 0: WRJ1
self.wrist.wrist_joint_0.angle, # Index 1: WRJ0
Finger joints
self.fingers.ffj3.angle, # Index 2: FFJ3
self.fingers.ffj2.angle, # Index 3: FFJ2
self.fingers.ffj1.angle, # Index 4: FFJ1
self.fingers.ffj0.angle, # Index 5: FFJ0
self.fingers.mfj3.angle, # Index 6: MFJ3
self.fingers.mfj2.angle, # Index 7: MFJ2
self.fingers.mfj1.angle, # Index 8: MFJ1
self.fingers.mfj0.angle, # Index 9: MFJ0
self.fingers.rfj3.angle, # Index 10: RFJ3
self.fingers.rfj2.angle, # Index 11: RFJ2
self.fingers.rfj1.angle, # Index 12: RFJ1
self.fingers.rfj0.angle, # Index 13: RFJ0
self.fingers.lfj4.angle, # Index 14: LFJ4
self.fingers.lfj3.angle, # Index 15: LFJ3
self.fingers.lfj2.angle, # Index 16: LFJ2
self.fingers.lfj1.angle, # Index 17: LFJ1
self.fingers.lfj0.angle, # Index 18: LFJ0
self.fingers.thj4.angle, # Index 19: THJ4
self.fingers.thj3.angle, # Index 20: THJ3
self.fingers.thj2.angle, # Index 21: THJ2

self.fingers.thj1.angle, # Index 22: THJ1
self.fingers.thj0.angle # Index 23: THJ0

])

class Wrist:
self.wrist_joint_1 : HingeJoint # WRJ1
self.wrist_joint_0 : HingeJoint # WRJ0

class Fingers:
Forefinger joints
self.ffj3 : HingeJoint # FFJ3
self.ffj2 : HingeJoint # FFJ2
self.ffj1 : HingeJoint # FFJ1
self.ffj0 : HingeJoint # FFJ0

Middle finger joints
self.mfj3 : HingeJoint # MFJ3
self.mfj2 : HingeJoint # MFJ2
self.mfj1 : HingeJoint # MFJ1
self.mfj0 : HingeJoint # MFJ0

Ring finger joints
self.rfj3 : HingeJoint # RFJ3
self.rfj2 : HingeJoint # RFJ2
self.rfj1 : HingeJoint # RFJ1
self.rfj0 : HingeJoint # RFJ0

Little finger joints
self.lfj4 : HingeJoint # LFJ4
self.lfj3 : HingeJoint # LFJ3
self.lfj2 : HingeJoint # LFJ2
self.lfj1 : HingeJoint # LFJ1
self.lfj0 : HingeJoint # LFJ0

Thumb joints
self.thj4 : HingeJoint # THJ4
self.thj3 : HingeJoint # THJ3
self.thj2 : HingeJoint # THJ2
self.thj1 : HingeJoint # THJ1
self.thj0 : HingeJoint # THJ0

class Palm:
self.pose : ObjectPose # The 3D position and orientation of the palm

def get_position(self) -> np.ndarray[(3,)]:
Returns the position of the palm in world coordinates
return self.pose.position

class Pen:
self.pose : ObjectPose # The 3D position and orientation of the pen
self.qpos : np.ndarray[(6,)] # The qpos values of the pen’s joints

def get_position(self) -> np.ndarray[(3,)]:
Returns the position of the pen in world coordinates
return self.pose.position

def get_relative_rotation(self) -> np.ndarray[(3,)]:
Returns the relative rotation of the pen
return self.pose.orientation

def get_position_to_target(self, target: Target) -> np.ndarray[(3,)]:
Returns the position vector from the pen to the target
return target.pose.position - self.pose.position

def get_rotation_to_target(self, target: Target) -> np.ndarray[(3,)]:
Returns the rotation vector from the pen to the target
return target.pose.orientation - self.pose.orientation

def get_qpos(self) -> np.ndarray[(6,)]:
Returns the qpos values of the pen’s joints
return self.qpos

class Target:
self.pose : ObjectPose # The 3D position

Additional knowledge:
1. All angles are expressed in radians.

2. The input ‘normed_obs‘ is a tensor with shape (B, H, obs_dim), ‘normed_actions‘ is a tensor with shape (B,
H, act_dim), where B is the batch size, H is the horizon length. The normed_obs is gotten from
‘normed_obs = get_obs()‘.

3. If you need to match the observations or actions to some explicit value and if not without_normalizer, you
should unnormalize them using ‘self.unnormalize(normed_obs, is_obs=True)‘.

4. If ‘dyn_model‘ is provided, please call ‘self.cal_dyn_reward(state=normed_obs, action=normed_actions)‘ to
calculates the reward for dynamics inconsistency (a scalar value) between generated states and actions.
Only consider it in phase 2. Pay attention the input should be normed_obs and normed_actions before
unnormalizing them.

5. Use L2 distance via ‘torch.norm(,p=2)‘ to calculate all the difference instead of mse loss or ‘torch.abs‘.
For terms where the last dimension is 1 (such as angles), we should use torch.squeeze to remove that
dimension before calculating the norm at dimension 1, rather than dimension 2.

You are allowed to use any existing Python package if applicable, but only use them when absolutely
necessary. Please import the required packages at the beginning of the function.

I want it to fulfill the following task: {"Write a guidance function for a diffusion-based planner that helps
the Adroit Shadow Hand rotate the pen to the desired target orientation."}

1. Please think step by step and explain what it means in the context of this environment;
2. Then write a differentiable guidance function that guides the planner to generate actions smoothly based

on the current normed state and action, with the function prototype as ‘def guidance_fn(self, normed_obs,
normed_actions, dyn_model=None, without_normalizer=False, desired_pen=None)‘. The function should return
the ‘reward‘ as a torch.Tensor of shape ‘(B,)‘;

3. All the reward including the goal achieving reward should be across all horizon steps. For some term, use
‘torch.mean()‘ to accumulate reward over the horizon.

4. Use input ‘desired_pen‘ as the target rotation, but you should reshape it by ‘target_rotation =
desired_pen[..., -3:].reshape(batch_size, 1, 3).repeat(1, horizon, 1)‘. You should first normalize the
direction vector and then use inner product to calculate the similarity between two orientations.

5. Don’t directly use actions to penalize the reward, but you can use the difference between the current and
previous hand joint states to penalize the reward. You encourage the hand joint movement to enhance
interaction with the object.

6. Use ‘self.scaling_factors‘ as an empty dictionary by default. If the scaling factor for any reward
component does not exist, initialize it adaptively to make that first reward term in batch approximately
1 initially, except for the the dynamics reward (make it 2.).

7. Take care of variables’ type, never use functions or variables not provided. Ensure that all operations
are compatible with PyTorch tensors and the function is differentiable. Do not use any absolute value
operation and inplace operations, e.g. ‘x += 1‘, ‘x[0] = 1‘, using ‘x = x + 1‘ instead.

8. Pay attention to the physical meaning of each dimension in the observation and action data as explained in
the environment description above.

9. When you writing code, you can also add some comments as your thought, like this:
‘‘‘
Here unnormalize the observations if a normalizer is provided
Here use ‘torch.norm‘ to compute the L2 distance between the current and target angles for the door hinge
‘‘‘

Few-shot hint:
1. Ensure that the guidance function uses soft interpolation for targets, e.g., smoothly guiding the pen

orientation towards soft goals over the trajectory horizon like ‘interpolated_angle = (1 - alpha) *
current_obj_orien + alpha * desired_orien‘. If use soft goals, don’t calculate another hard goal reward.

2. No smoothness reward for the pen movement. Only consider the smoothness of the hand joint movement.

E.4. Hand Hammer Task Prompt Example

You are an expert in robotics, diffusion model, reinforcement learning, and code generation.
We are going to use an Adroit Shadow Hand to complete given tasks. The action space of the robot is a

normalized ‘Box(-1.0, 1.0, (28,), float32)‘.

Now I want you to help me write a guidance function for a diffusion-based planner.
1. The guidance function is used to steer the sampling process toward desired outcomes during the reverse

diffusion process.
2. The guidance function should be differentiable, which computes a scalar reward indicating how well each

intermediate trajectory aligns with the task objectives.

In manipulation tasks involving interaction with an object, such as opening a door, hammer striking, note
that we cannot directly control the object’s state. Thus, the guidance function should consider a
two-phase approach:

Phase 1 (Pre-Interaction Phase): The guidance function should focus solely on guiding the hand’s state to
align with the object’s handle or interaction point.

Phase 2 (Post-Interaction Phase): Once the hand is in contact with the object, the guidance function should
aim to move the object towards achieving the task goal. During this phase, the guidance function
typically include the following components (some part is optional, so only include them if really
necessary):

1. difference between the current state of the object and its goal state
2. dynamics constraints to ensure the interactions between the hand and the object are physically plausible
3. regularization of the object’s state change (e.g., limiting the hinge state change of a door to avoid

abrupt movements).
4. [optional] extra constraint of the target object, which is often implied by the task instruction
5. [optional] extra constraint of the robot, which is often implied by the task instruction
...

Environment Description:
class BaseEnv(gym.Env):

self.hand : AdroitHand # The Adroit Shadow Hand used in the environment
self.hammer : Hammer # The Hammer object in the environment
self.nail : Nail # The Nail object in the environment
self.dt : float # The time between two actions, in seconds

def get_obs(self) -> np.ndarray[(46,)]:
Returns the observation vector
obs = np.concatenate([

self.hand.get_joint_positions(), # Indices 0-25
[self.nail.insertion_displacement], # Index 26
self.hammer.get_qpos(), # Indices 27-32
self.hand.palm.get_position(), # Indices 33-35
self.hammer.get_position(), # Indices 36-38
self.hammer.get_orientation(), # Indices 39-41
self.nail.get_position(), # Indices 42-44
[self.nail.force] # Index 45

])
return obs

class AdroitHand:
self.arm : Arm # The arm component of the hand
self.wrist : Wrist # The wrist component of the hand
self.fingers : Fingers # The fingers of the hand
self.palm : Palm # The palm of the hand

def get_joint_positions(self) -> np.ndarray[(26,)]:
Returns the angular positions of all joints in the hand and arm
return np.array([

self.arm.rotation_x.angle, # Index 0: ARRx
self.arm.rotation_y.angle, # Index 1: ARRy
self.wrist.wrist_joint_1.angle, # Index 2: WRJ1
self.wrist.wrist_joint_0.angle, # Index 3: WRJ0
Finger joints
self.fingers.ffj3.angle, # Index 4: FFJ3
self.fingers.ffj2.angle, # Index 5: FFJ2
self.fingers.ffj1.angle, # Index 6: FFJ1
self.fingers.ffj0.angle, # Index 7: FFJ0
self.fingers.mfj3.angle, # Index 8: MFJ3
self.fingers.mfj2.angle, # Index 9: MFJ2
self.fingers.mfj1.angle, # Index 10: MFJ1
self.fingers.mfj0.angle, # Index 11: MFJ0
self.fingers.rfj3.angle, # Index 12: RFJ3
self.fingers.rfj2.angle, # Index 13: RFJ2
self.fingers.rfj1.angle, # Index 14: RFJ1
self.fingers.rfj0.angle, # Index 15: RFJ0
self.fingers.lfj4.angle, # Index 16: LFJ4
self.fingers.lfj3.angle, # Index 17: LFJ3
self.fingers.lfj2.angle, # Index 18: LFJ2
self.fingers.lfj1.angle, # Index 19: LFJ1
self.fingers.lfj0.angle, # Index 20: LFJ0
self.fingers.thj4.angle, # Index 21: THJ4
self.fingers.thj3.angle, # Index 22: THJ3
self.fingers.thj2.angle, # Index 23: THJ2
self.fingers.thj1.angle, # Index 24: THJ1
self.fingers.thj0.angle # Index 25: THJ0

])

class Hammer:
self.pose : ObjectPose # The 3D position and orientation of the hammer
self.velocity : ObjectVelocity # Linear and angular velocities of the hammer
self.OBJTx : SlideJoint # The slide joint along the x-axis
self.OBJTy : SlideJoint # The slide joint along the y-axis
self.OBJTz : SlideJoint # The slide joint along the z-axis
self.OBJRx : RevoluteJoint # The revolute joint around the x-axis
self.OBJRy : RevoluteJoint # The revolute joint around the y-axis
self.OBJRz : RevoluteJoint # The revolute joint around the z-axis

def get_position(self) -> np.ndarray[(3,)]:
Returns the position of the hammer’s center of mass in world coordinates
return self.pose.position

def get_orientation(self) -> np.ndarray[(3,)]:
Returns the relative rotation of the hammer with respect to x,y,z axes
return self.pose.get_euler_angles()

def get_qpos(self) -> np.ndarray[(6,)]:
Returns the joint positions of the hammer
return np.array([self.OBJTx.position, self.OBJTy.position, self.OBJTz.position,

self.OBJRx.angle, self.OBJRy.angle, self.OBJRz.angle])

class Nail:
self.pose : ObjectPose # The 3D position of the nail
self.insertion_displacement : float # Current insertion depth of the nail
self.force : float # Linear force exerted on the nail head

def get_position(self) -> np.ndarray[(3,)]:
Returns the position of the nail in world coordinates
return self.pose.position

class ObjectVelocity:
self.linear : np.ndarray[(3,)] # Linear velocity in x,y,z
self.angular : np.ndarray[(3,)] # Angular velocity around x,y,z axes

class ObjectPose:
self.position : np.ndarray[(3,)] # 3D position in world coordinates
self.orientation : np.ndarray[(4,)] # Quaternion orientation (w, x, y, z)

def get_euler_angles(self) -> np.ndarray[(3,)]:
Returns the orientation as Euler angles (roll, pitch, yaw)
return quaternion_to_euler(self.orientation)

Observation Index Mapping:
Index 0-25: Angular positions of the hand joints (in radians);
Index 26: Insertion displacement of nail (in meters) range from -0.01 to 0.09;
Index 27-32: Qpos of the hammer joints (in meters and radians);
Index 33-35: Position of the center of the palm in x,y,z (in meters);
Index 36-38: Position of the hammer’s center of mass in x,y,z (in meters);
Index 39-41: Relative rotation of hammer’s center of mass w.r.t x,y,z axes (in radians);
Index 42-44: Position of the nail in x,y,z (in meters);
Index 45: Linear force exerted on the head of the nail (in Newtons) range from -1.0 to 1.0.

Additional knowledge:
1. All angles are expressed in radians.
2. The input ‘normed_obs‘ is a tensor with shape (B, H, obs_dim), ‘normed_actions‘ is a tensor with shape (B,

H, act_dim), where B is the batch size, H is the horizon length. The normed_obs is gotten from
‘normed_obs = get_obs()‘.

3. If you need to match the observations or actions to some explicit value and if not without_normalizer, you
should unnormalize them using ‘self.unnormalize(normed_obs, is_obs=True)‘.

4. If ‘dyn_model‘ is provided, please call ‘self.cal_dyn_reward(state=normed_obs, action=normed_actions)‘ to
calculates the reward for dynamics inconsistency (a scalar value) between generated states and actions.
Only consider it in phase 2. Pay attention the input should be normed_obs and normed_actions before
unnormalizing them.

5. Use L2 distance via ‘torch.norm(,p=2)‘ to calculate all the difference instead of mse loss or ‘torch.abs‘.
6. The transition between Phase 1 and Phase 2 by using a grasp mask to determine if the hand has successfully

grasped the object. Use a condition like ‘mask = torch.norm(palm_pos[:, 0, :] - handle_pos[:, 0, :], p=2,
dim=1) < 0.1‘ to switch from guiding only the hand to guiding both the hand and the object.

You are allowed to use any existing Python package if applicable, but only use them when absolutely
necessary. Please import the required packages at the beginning of the function.

I want it to fulfill the following task: {"Write a guidance function for a diffusion-based planner that helps
the Adroit Shadow Hand grasp the hammer and only drive half nail into the board."}

1. Please think step by step and explain what it means in the context of this environment;
2. Then write a differentiable guidance function that guides the planner to generate actions smoothly based

on the current normed state and action, with the function prototype as ‘def guidance_fn(self, normed_obs,
normed_actions, dyn_model=None, without_normalizer=False)‘. The function should return the ‘reward‘ as a
torch.Tensor of shape ‘(B,)‘;

3. Make sure the guidance aligns with the two phases: In Phase 1, only calculate a pre-grasp reward to guide
the hand closer to the object. In Phase 2, guide both the object toward the final task goal. Ensure
object velocity constraints are applied to regulate object state changes.

4. All the reward including the goal achieving reward should be across all horizon steps. For some term, use
‘torch.mean()‘ to accumulate reward over the horizon. For terms where the last dimension is 1 (such as
angles), we should use torch.squeeze to remove that dimension before calculating the norm at dimension 1,
rather than dimension 2.

5. Take care of variables’ type, never use functions or variables not provided. Ensure that all operations
are compatible with PyTorch tensors and the function is differentiable. Do not use any absolute value
operation and inplace operations, e.g. ‘x += 1‘, ‘x[0] = 1‘, using ‘x = x + 1‘ instead.

6. Pay attention to the physical meaning of each dimension in the observation and action data as explained in
the environment description above.

7. When you writing code, you can also add some comments as your thought, like this:
‘‘‘
Here unnormalize the observations if a normalizer is provided
Here use ‘torch.norm‘ to compute the L2 distance between the current and target angles for the door hinge
Here cauculate the grasp mask for the pre-interaction phase
‘‘‘

Few-shot hint:
1. Use nail insertion displacement (range from -0.01 No Drive to 0.09 Full Drive) as a measure of nail

insertion degree.
2. Constraint both the hammer qpos changes and the hammer position & rotation changes (pos+rot as 1 item) to

avoid abrupt movements.
3. Use ‘self.scaling_factors‘ as an empty dictionary by default. If the scaling factor for any reward

component does not exist, initialize it adaptively to make that first reward term in batch approximately
6 initially, except for the hammer qpos change constraint reward (make the reward 12) and the dynamics
reward (make it 0.3).

Then we can replace the task instruction marked by red with specific requirements according to different tasks. This
structured prompting approach enables LLMs to generate physically consistent and task-appropriate guidance functions for
goal-adaptive dexterous manipulation.

F. Samples of Generated Guidance Function

F.1. Sample of Guidance Function on Hand Door Task

def guidance_fn(self, normed_obs, normed_actions, dyn_model=None, without_normalizer=False):
import math
"""
Guidance function for door opening task with the Adroit hand.
Args:

normed_obs: Normalized observations tensor of shape (B, H, obs_dim)
normed_actions: Normalized actions tensor of shape (B, H, act_dim)
dyn_model: Optional dynamics model for consistency checking
without_normalizer: Boolean indicating if normalization should be skipped

Returns:
reward: Tensor of shape (B,) containing the guidance rewards

"""
batch_size, horizon, _ = normed_obs.shape

Get the unnormalized observations if normalizer is provided
obs = normed_obs if without_normalizer else self.unnormalize(normed_obs, is_obs=True)

Extract relevant state information
palm_pos = obs[:, :, 30:33] # Palm position
handle_pos = obs[:, :, 33:36] # Door handle position
door_hinge_angle = obs[:, :, 28:29] # Door hinge angle

Define target door angle (30 degrees = math.pi/6 radians)
target_door_angle = torch.full_like(door_hinge_angle, math.pi / 6)

Calculate grasp mask for phase transition
Use distance between palm and handle to determine if hand is close enough
grasp_threshold = 0.1
grasp_dist = torch.norm(palm_pos - handle_pos, p=2, dim=2)
grasp_mask = (grasp_dist < grasp_threshold).float()

Phase 1: Pre-interaction rewards
Calculate reaching reward - guide hand to door handle
reaching_dist = torch.norm(palm_pos - handle_pos, p=2, dim=2)
reaching_reward = -torch.mean(reaching_dist, dim=1) # Average over horizon

Scale reaching reward if not already scaled
if ’reaching’ not in self.scaling_factors:

Initialize scaling to make initial reward approximately 12
with torch.no_grad():

initial_reaching = -reaching_reward[0].item()

self.scaling_factors[’reaching’] = 12.0 / (initial_reaching + 1e-8)
reaching_reward = reaching_reward * self.scaling_factors[’reaching’]

Phase 2: Post-interaction rewards
Calculate door angle reward
door_angle_diff = torch.norm(door_hinge_angle - target_door_angle, p=2, dim=2)
door_reward = -torch.mean(door_angle_diff, dim=1) # Average over horizon

Scale door reward if not already scaled
if ’door’ not in self.scaling_factors:

Initialize scaling to make initial reward approximately 30
with torch.no_grad():

initial_door = -door_reward[0].item()
self.scaling_factors[’door’] = 30.0 / (initial_door + 1e-8)

door_reward = door_reward * self.scaling_factors[’door’]

Calculate velocity constraint reward to ensure smooth door movement
door_velocity = (door_hinge_angle[:, 1:, 0] - door_hinge_angle[:, :-1, 0]) / self.dt
velocity_reward = -torch.norm(door_velocity, p=2, dim=1)

Scale velocity reward if not already scaled
if ’velocity’ not in self.scaling_factors:

with torch.no_grad():
initial_velocity = -velocity_reward[0].item()
self.scaling_factors[’velocity’] = 12.0 / (initial_velocity + 1e-8)

velocity_reward = velocity_reward * self.scaling_factors[’velocity’]

Add dynamics consistency reward if model is provided
dyn_reward = torch.zeros_like(reaching_reward)
if dyn_model is not None:

dyn_reward = self.cal_dyn_reward(state=normed_obs, action=normed_actions)
Scale dynamics reward if not already scaled
if ’dynamics’ not in self.scaling_factors:

with torch.no_grad():
initial_dyn = dyn_reward[0].item()
self.scaling_factors[’dynamics’] = 1.2 / (initial_dyn + 1e-8)

dyn_reward = dyn_reward * self.scaling_factors[’dynamics’]

Combine rewards using the grasp mask
Pre-interaction phase: only reaching reward
Post-interaction phase: door reward + velocity reward + dynamics reward
total_reward = (1 - grasp_mask[:, 0]) * reaching_reward + \

grasp_mask[:, 0] * (door_reward + velocity_reward + dyn_reward)

return total_reward

F.2. Sample of Guidance Function on Hand Pen Task

def guidance_fn(self, normed_obs, normed_actions, dyn_model=None, without_normalizer=False, desired_pen=None):
Get batch size and horizon length
batch_size, horizon, obs_dim = normed_obs.shape

Process target rotation
target_rotation = desired_pen[..., -3:].reshape(batch_size, 1, 3).repeat(1, horizon, 1)

Initialize reward components
reward = torch.zeros(batch_size, device=normed_obs.device)

Unnormalize observations if normalizer is provided
if not without_normalizer:

obs = self.unnormalize(normed_obs, is_obs=True)
else:

obs = normed_obs

Extract relevant states
hand_joints = obs[..., :24] # Hand joint positions
pen_rotation = obs[..., 30:33] # Pen rotation

1. Orientation alignment reward using soft interpolation
Normalize vectors before computing similarity
pen_rotation_norm = pen_rotation / (torch.norm(pen_rotation, p=2, dim=-1, keepdim=True) + 1e-6)
target_rotation_norm = target_rotation / (torch.norm(target_rotation, p=2, dim=-1, keepdim=True) + 1e-6)

Compute similarity using dot product (higher means more aligned)
orientation_similarity = torch.sum(pen_rotation_norm * target_rotation_norm, dim=-1)
orientation_reward = torch.mean(orientation_similarity, dim=1)

Initialize scaling factor for orientation reward if not exists
if ’orientation’ not in self.scaling_factors:

self.scaling_factors[’orientation’] = 1.0 / (orientation_reward[0].abs().item() + 1e-6)

reward = reward + self.scaling_factors[’orientation’] * orientation_reward

2. Hand joint movement smoothness reward
Calculate joint position differences between consecutive timesteps
joint_diffs = hand_joints[:, 1:] - hand_joints[:, :-1]
smoothness_penalty = torch.norm(joint_diffs, p=2, dim=-1) # Shape: (batch_size, horizon-1)
smoothness_reward = -torch.mean(smoothness_penalty, dim=1) # Average over horizon

Initialize scaling factor for smoothness reward if not exists
if ’smoothness’ not in self.scaling_factors:

self.scaling_factors[’smoothness’] = 1.0 / (smoothness_reward[0].abs().item() + 1e-6)

reward = reward + self.scaling_factors[’smoothness’] * smoothness_reward

3. Dynamic consistency reward (if model provided)
if dyn_model is not None:

dyn_reward = self.cal_dyn_reward(state=normed_obs, action=normed_actions)

Initialize scaling factor for dynamics reward if not exists
if ’dynamics’ not in self.scaling_factors:

self.scaling_factors[’dynamics’] = 2.0 / (dyn_reward[0].abs().item() + 1e-6)

reward = reward + self.scaling_factors[’dynamics’] * dyn_reward

return reward

F.3. Sample of Guidance Function on Hand Hammer Task

def guidance_fn(self, normed_obs, normed_actions, dyn_model=None, without_normalizer=False, tool_pos=None):
"""
Guidance function for hammer-nail task with Adroit hand.
Args:

normed_obs: Normalized observations, shape (B, H, obs_dim)
normed_actions: Normalized actions, shape (B, H, act_dim)
dyn_model: Optional dynamics model for consistency checking
without_normalizer: Boolean indicating if normalization should be skipped

Returns:
reward: Total reward tensor of shape (B,)

"""
batch_size = normed_obs.shape[0]
horizon_len = normed_obs.shape[1]
device = normed_obs.device

Get unnormalized observations if normalizer is provided
obs = normed_obs if without_normalizer else self.unnormalize(normed_obs, is_obs=True)

Extract relevant observations across all timesteps
palm_pos = obs[:, :, 33:36] # Hand palm position
hammer_pos = obs[:, :, 36:39] # Hammer position
nail_pos = obs[:, :, 42:45] # Nail position
nail_insertion = obs[:, :, 26] # Nail insertion depth, keep dim for proper broadcasting
tool_pos = tool_pos[:, None, :].repeat(1, horizon_len, 1)

Calculate grasp mask based on distance between palm and hammer
Use first timestep to determine if hand has grasped hammer
grasp_threshold = 0.1
grasp_mask = torch.norm(palm_pos[:, 0, :] - hammer_pos[:, 0, :], p=2, dim=1) < grasp_threshold

Initialize total reward
total_reward = torch.zeros(batch_size, device=device)

Phase 1: Pre-interaction guidance (hand approaching hammer)
pre_grasp_reward = -torch.mean(

torch.norm(palm_pos - hammer_pos, p=2, dim=2),
dim=1

)

Adaptive scaling for pre-grasp reward
if ’pre_grasp’ not in self.scaling_factors:

self.scaling_factors[’pre_grasp’] = 6.0 / (torch.abs(pre_grasp_reward[0]) + 1e-6)

total_reward = total_reward + self.scaling_factors[’pre_grasp’] * pre_grasp_reward

Phase 2: Post-interaction guidance (hammer control and nail insertion)
Only apply if hand has grasped hammer
if torch.any(grasp_mask):

contact_mask = torch.norm(tool_pos - nail_pos, p=2, dim=2) < 0.1
Target nail insertion (halfway = 0.04m)
target_insertion = 0.04 * torch.ones_like(nail_insertion)
insertion_reward = \

-torch.norm(nail_insertion - target_insertion, p=2, dim=1) #* contact_mask[:, 0]

Adaptive scaling for insertion reward
if ’insertion’ not in self.scaling_factors:

self.scaling_factors[’insertion’] = 6.0 / (torch.abs(insertion_reward[0]) + 1e-6)

Constraint on hammer position changes (smooth movement)
hammer_joint_pos_changes = torch.norm(

obs[:, 1:, 27:33] - obs[:, :-1, 27:33],
p=2, dim=2

)
hammer_joint_reward = -torch.mean(hammer_joint_pos_changes, dim=1)

Adaptive scaling for nail movement constraint
if ’hammer_joint’ not in self.scaling_factors:

self.scaling_factors[’hammer_joint’] = 6.0 / (torch.abs(hammer_joint_reward[0]) + 1e-6)

Constraint on hammer position changes (smooth movement)
hammer_pos_changes = torch.norm(

hammer_pos[:, 1:, :] - hammer_pos[:, :-1, :],
p=2, dim=2

)
hammer_movement_reward = -torch.mean(hammer_pos_changes, dim=1)

Adaptive scaling for hammer movement constraint
if ’hammer_movement’ not in self.scaling_factors:

self.scaling_factors[’hammer_movement’] = 12.0 / (torch.abs(hammer_movement_reward[0]) + 1e-6) #
100.

Add dynamics consistency reward if model provided
if dyn_model is not None:

dyn_reward = -self.cal_dyn_reward(state=normed_obs, action=normed_actions)

Adaptive scaling for dynamics reward
if ’dynamics’ not in self.scaling_factors:

self.scaling_factors[’dynamics’] = 0.3 / (torch.abs(dyn_reward[0]) + 1e-6)

Apply dynamics reward only to grasped trajectories
total_reward = total_reward + self.scaling_factors[’dynamics’] * dyn_reward * grasp_mask.float()

Add all Phase 2 rewards
phase2_reward = (self.scaling_factors[’insertion’] * insertion_reward +

self.scaling_factors[’hammer_joint’] * hammer_joint_reward +
self.scaling_factors[’hammer_movement’] * hammer_movement_reward)

Apply Phase 2 rewards only to grasped trajectories
total_reward = total_reward + phase2_reward * grasp_mask.float()

return total_reward

	Introduction
	Related Works
	Preliminary
	Diffusion Model as Policy
	Classifier-free Conditional Diffusion Policy
	Classifier-guided Diffusion Policy

	Analysis of Diffusion-based Planning Methods for Interaction-intensive Tasks
	Method
	Interaction-aware Diffusion-based Planning
	LLM-Based Guidance Generation

	Experiments
	Performance Comparisons on Goal Adaptability in Interaction-Aware Tasks
	Evaluation on Various Dexterous Tasks
	Validation for Preventing Ghost States
	Ablation on LLM-based Guidance Generation
	Ablation Study of DexHandDiff Framework
	Visualizations
	Efficiency

	Conclusion
	Brief Theoretical Review of Gradient Guidance in Classifier-guided Diffusion Model
	Environment Settings
	More Visualizations
	Goal Adaptive Door Tasks
	Other Dexterous Manipulation Tasks

	Implementation Details
	LLM-based Guidance Generation Prompts
	Overview
	Hand Door Task Prompt Example
	Hand Pen Task Prompt Example
	Hand Hammer Task Prompt Example

	Samples of Generated Guidance Function
	Sample of Guidance Function on Hand Door Task
	Sample of Guidance Function on Hand Pen Task
	Sample of Guidance Function on Hand Hammer Task

