DIFFUSIONRENDERER: Neural Inverse and Forward Rendering
with Video Diffusion Models

Supplementary Material

In the supplementary material, we provide additional im-
plementation details (Sec. A) and further results and analysis
(Sec. B). Please refer to the ACCOMPANYING VIDEO for
more qualitative results and comparisons.

A. Experimental Settings

Implementation details. We fine-tune our models based on
Stable Video Diffusion' [8].

For the inverse renderer, we modify the diffusion UNet
by expanding four additional channels in the first convolu-
tional layer to include image conditions. We optimize both
the diffusion UNet parameters and the domain embedding
parameters using a learning rate of 3 x 10~°. The training
is conducted with a batch size of 256, with a mix of multiple
scene attributes. When generating the single-channel depth,
metallic, and roughness maps, we average the outputs across
the three channels to obtain the final result for each map.

In the forward renderer, we expand the first convolu-
tional layer of the diffusion UNet by 20 additional channels
to concatenate the additional pixel-aligned G-buffer condi-
tions. Since the depth, metallic, and roughness maps are
single-channel properties, we replicate each to create three-
channel inputs before passing them into the VAE encoder €.
The weights of the cross-attention layers are repurposed for
lighting conditions, and are reset prior to training. We use a
learning rate of 1 x 10~ for optimization.

Both models are trained using the AdamW optimizer for
20,000 iterations, with mixed-precision (fp16) training at a
resolution of 512x512 pixels. The training takes around 2
days on 32 A100 GPUs. We have empirically observed that
the video model performs best when trained on video lengths
that it will encounter during inference. To ensure robust
generalization across different frame lengths, we randomly
select training video lengths of 1, 4, 8, 16, and 24 frames.
This strategy allows the model to adapt effectively to vary-
ing video lengths during inference without compromising
output quality. As a result, the models can also effectively
process a single image by treating it as a video with one
frame. During the training of both models, a 0.1 dropout is
applied independently to each condition channel to reduce
reliance on individual conditions and potentially enhance
robustness. During inference, we empirically observe that a
small classifier-free guidance (CFG) such as 1.2 enhances
the visual quality of the forward rendering model. CFG

Ihttps : / / huggingface . co / stabilityai / stable -

video-diffusion-img2vid

does not provide noticeable benefit for the inverse rendering
model and we do not use it for the inverse rendering model.

Data preparation. For synthetic data curation, we begin
with the Objaverse [16] LVIS split, containing 46,207 3D
models. The 3D assets are filtered based on the follow-
ing criteria: (i) assets include valid PBR attributes such as
roughness and metallic, (ii) assets can be rendered without
geometry/texture artifacts. This process yields a final set
of 36,500 3D assets. We collect 766 HDR panoramas from
three sources: PolyHaven”, DoschDesign®, and HDRMaps*.
For PBR textures, we collect 6,300 CCO textures from multi-
ple sources: 3D Textures’, ambientCG®, cgbookcase7, Poly-
Haven®, sharetextures’, and TextureCan'?. We remove tex-
tures that include only diffuse channels or lack diffuse tex-
tures, and manually exclude non-tileable textures, resulting
in 4,260 high-quality PBR textures.

In each scene, we place a plane with a randomly selected
PBR material, and sample up to three 3D objects, and place
them on the plane after randomly rotating, translating, and
scaling. We perform collision detection to avoid intersecting
objects. We also place up to three primitives (cube, sphere,
and cylinder) with randomized materials to cover complex
lighting effects such as inter-reflections. The materials of
primitives can be from the aforementioned texture maps or
a monolithic material with varying albedo, roughness, and
metallic. A randomly selected HDR environment map illu-
minates the scene. We also add random horizontal rotation,
flipping, and intensity scaling to the environment map. The
rendered videos contain 5 types of motions, 1) 360-degree
camera orbits; 2) small-scale regional camera oscillation; 3)
360-degree rotating light with a fixed camera; 4) rotating ob-
jects with a fixed camera; and 5) translating objects around
the plane.

We render videos of all scenes with corresponding intrin-
sic images in a custom path tracer based on OptiX [58], with
256 spp, OptiX denoising and AgX tonemapper''. In total,
there are 150,000 videos with paired ground-truth G-buffers
and environment maps, at 24 frames per video in 512x512

2polyhaven.com/hdris (License: CCO)
3doschdesign. com(License: link)
4nhdrmaps . com (License: Royalty-Free)
Shttps://3dtextures.me/tag/cc0/
://ambientcg.com

://www.cgbookcase.com/textures
s://polyhaven.com/
aretextures.com

turecan.com

.com/sobotka/AgX

https://huggingface.co/stabilityai/stable-video-diffusion-img2vid
https://huggingface.co/stabilityai/stable-video-diffusion-img2vid
polyhaven.com/hdris
doschdesign.com
https://www.doschdesign.com/information.php?p=2
hdrmaps.com
https://3dtextures.me/tag/cc0/
https://ambientcg.com
https://www.cgbookcase.com/textures
https://polyhaven.com/
https://www.sharetextures.com
https://www.texturecan.com
https://github.com/sobotka/AgX

CVVDP 1 ‘ SyntheticObjects | SyntheticScenes
DiLightNet [82] 5.44 2.99
Neural Gaffer [30] 6.49 3.47
Ours 6.77 6.40

Table S1. Quantitative evaluation of relighting in terms of Col-
orVideoVDP. ColorVideoVDP reports video quality in the JOD
(Just-Objectionable-Difference) units. The highest quality (no dif-
ference) is reported as 10 and lower values are reported for distorted
content. We compute a JOD value per clip for three novel lighting
conditions in each series and report the average over all clips.

resolution.

Baseline configurations. DiLightNet [82] re-
quires a text prompt per example, so we used
meta/llama-3.2-11b-vision-instruct'?

to generate a short prompt for each example in SyntheticOb-
Jjects and SyntheticScenes based on the first image in each
clip and the instruction "What is in this image? Describe the
materials. Be concise and produce an answer with a few
sentences, no more than 50 words."

Environment map encoder pre-training. As detailed in
the main paper, the environment lighting condition in our
forward rendering model is encoded through cross-attention
between the UNet’s spatial latent features and the environ-
ment map representation. To provide effective lighting en-
codings, similar to VAE and CLIP embeddings in diffusion
models, we propose pre-training an environment map auto-
encoder specifically designed to capture HDR light intensity
and orientation.

With both LDR space and log space environment maps
(Ei¢r and Ejo,) as the model input and auto-encoder’s re-
construction target, our encoder can retain detailed ambient
lighting information while emphasizing high-intensity HDR
light spots. To ensure precise control over light orientation
in scene rendering, we introduce a directional encoding map,
Egir, where each pixel represents a unit vector corresponding
to a light direction in the camera coordinate system. By mod-
ifying Eg;;, the light orientation in the scene can be adjusted
accordingly.

The pre-training process aims to produce an environ-
ment map encoder &y, capable of encoding complex di-
rectional HDR lighting. For this, we pair &, with two
auxiliary modules: an environment map decoder De,y, and
a direction query encoder Eg;,. This forms an auto-encoder
training pipeline, as illustrated in Fig. S1. The encoder
Eenv processes concatenated VAE-encoded inputs hg =
(E(Eiar), €(Eiog), € (Eqir)), generating K = 4 levels of
multi-resolution features (hi)X . Similarly, & takes
a VAE-encoded directional map hp = £(E},), produc-
ing features (hi)X, of the same shape. The decoder
Deny reconstructs the inputs Ej,, and E{, using the features

(hZ) =1 and (hdlr)

oy * , through cross-attention layers. To

124 tps://www.llama.com/

Dir. Encoder Sd“

Input Lighting Direction Query

L%

Eje

KV Embed Query Embed.
\

Target Lighting

|

Eqgir & Eig Elog
Env. Encoder Eepy Env. Decoder D,

DEepe—
my-ss01)

env

Figure S1. The overview of our environment map auto-encoder
training pipeline.

enhance directional encoding, the training objective involves
re-projecting the environment map with random rotations
applied to the lighting sphere. This rotation information
can be precisely represented by EJ;.. To reconstruct the re-
projected environment map, we use the features (hj,)X
encoded from E/; as embedding to query the directional
HDR lighting encoded in (h¢,,)% | (serving as key-value
embedding) through the cross-attention layers in environ-
ment map decoder D,,. The training objective therefore is:

£env = HhE’ - 'Df:nv(genv(hE)»‘S‘dir(hD))”2 (7)

where hE/ = (S(El/dr)7 g(El/og)) €
Object Insertion. We provide additional details of object
insertion application shown in main paper Fig. 8. The objec-
tive is to seamlessly insert an object (either 2D or 3D) into a
given background image Iyg, ensuring consistent appearance
with the background (e.g., aligned lighting effects). Our
method achieve this task with a combination of the inverse
and forward rendering processes, as illustrated in Fig. S2.

First, our inverse rendering model estimates the G-buffer
of the background image I,;. The G-buffer of the object to
be inserted is obtained either through our inverse renderer
or directly from a rendering engine. Based on the known
foreground object mask M, these G-buffers are then blended
to create a composite G-buffer. Additionally, we estimate
the lighting using an off-the-shelf model [61].

Using the composite G-buffer and estimated lighting, our
forward rendering model generates two images: I7 & rep-
resenting the scene with the inserted object, and Ibg, the
re-rendering of the original background. To minimize un-
intended changes to the original background image, we fol-
low [41, 44, 74] and compute a shading ratio p = I /T;,
that accounts for the relative shading effects introduced by
the inserted object.

The final edited image I, is computed by multiplying
the shading ratio with the original background image Iy, and
compositing the masked foreground object M - I3 onto the

R X Preny X Weny X8

https://www.llama.com/

Background image Ty

P g

Object to be inserted

Est. Lighting

Background image
Ing Lins/Tog

Shading Ratio Masked Foreground Final rendering of insertion
M-I,

Tins

Figure S2. Overview of the object insertion workflow.

shaded background:

*

I
Iins:(l_M)'Ibg'ﬁ"_M'Ii*ns
bg

®
This process is visualized in Fig. S2 (bottom).

B. Additional Results

Runtime cost. Since our models are built on top of Stable
Video Diffusion, the inference runtime cost of our models is
roughly on the same level as Stable Video Diffusion. For a
24-frame video with a resolution of 512x512, the peak GPU
memory cost for both models at inference time is around
21 GB. the inverse rendering model takes 9.7 seconds to
perform 20 denoising steps including VAE encoding and
decoding, clocked on one A100 GPU. The forward rendering
model takes 20.3 seconds to run 20 denoising steps including
VAE encoding and decoding. The increased runtime of the
forward renderer is due to additional condition signals, which
require extra time for encoding.

Without a separate environment map encoder, Ours (w/o
Env. Encoder) completes 20 denoising steps in 19.9 seconds.
The runtime overhead introduced by the environment map
encoder is negligible.

Temporal consistency. In Table SI we report Col-
orVideoVDP [50] (CVVDP) scores for the relighting com-
parison (c.f., Table 2 and Fig. 6 in the main paper). CVVDP
predicts the perceptual difference between pairs of videos
and accounts for spatial and temporal aspects of vision. We
note that our method has the highest CVVDP score for
both test sets, which is consistent with visual inspections.
Please refer to the supplemental video to assess temporal
consistency. In contrast to Neural Gaffer and DiLightNet,
which leverage image diffusion models, our approach builds
upon video diffusion models, which provide considerably
improved temporal consistency. For reproducibility, CVVDP
was configured according to:

ColorvVideoVDP v0.4.2, 75.4 [pix/deg], Lpeak=200,
Lblack=0.2, Lrefl=0.3979 [cd/m"2] (standard_4k).

User study. We conducted a user study to evaluate the image
perceptual quality of our method. In this study, participants
were shown a reference path-traced rendering alongside a
pair of renderings: one from our method and one from a
baseline (randomly shuffled). They were asked to select
which rendering perceptually more closely resembles the
reference, considering aspects like lighting, shadows, and
reflections. This user study was conducted for both neural
rendering and relighting tasks. The evaluation data were
sampled from SyntheticScenes and SyntheticObjects (the
same datasets used for Table 1 and Table 2) (70 scenes).
For each comparison, we collected 9 user selections to de-
termine the preferred rendering by majority voting. The
preference percentages for our method compared to baseline
approaches are reported across all examples. Inspired by
GPTEval3D [77], we repeat this experiment using GPT-4V
as perceptual evaluators. Reported in Table S2, the user
study results align with our findings in the main paper, and
indicate a reasonable level of agreement between human and
GPT-4V assessments.

Neural Rendering Relighting
SSRT SplitSum RGB+<+X DiLightNet DiLightNet N.Gaffer
§ Human 72% 75% 85% 85% 90% 65%
&3 GPT4V 40% 50% 80% 85% 60% 68%
2 Human 37% 43% 76% 83% 57% 57%
S GPT4V 57% 45% 87% 54% 55% 52%

Table S2. User study. We report the percentage of images where
users preferred Ours over baselines. A preference > 50% indicates
Ours outperforming baselines. Evaluation follows main paper
Table 1, 2 on SyntheticScenes and SyntheticObjects.

Comparison with FEGR [75] and UrbanlR [46]. We
additionally compare to 3D inverse rendering and relighting
approaches FEGR [75] and UrbanIR [46] in Fig. S5. These
methods optimize neural 3D representation, then use volume
rendering and PBR to produce the final relighting result. As
the input data is limited to a single illumination condition,
they often cannot cleanly remove shadows from the albedo,
resulting in shadow artifacts in re-lit results. Additionally,
existing scene reconstruction methods struggle to handle
highly detailed structures such as trees, and dynamic scenes,
which limits their fidelity for PBR path tracing. In contrast,
our method consistently generates more photorealistic results
without relying on explicit 3D geometry constraints. We
refer to the accompanying video for animated results.

f e @l & B
= J § o W
& QmEe @
L R
=f win g

SyntheticObjects SyntheticScenes

Figure S3. Visualization of the synthetic datasets for quantitative evaluation.

Input Image Neural Gaffer DiLightNet Ours GT Relit Target Env.

Figure S4. Additional qualitative comparison of relighting. Our method produces more accurate specular reflections compared to the
baselines.

Input Scene

Metallic Roughness

FEGR

UrbanIR

Input Scene Albedo Normals Metallic

-y- .

FEGR

Roughness

UrbanIR '

Figure S5. Qualitative comparison of inverse rendering and relighting on Waymo dataset with FEGR [75] and UrbanIR [46].

	. Introduction
	. Related Work
	. Preliminaries
	. Method
	. Neural Forward Rendering
	. Neural Inverse Rendering
	. Data Strategy
	. Training pipeline
	. Editing Applications

	. Experiments
	. Experiment Settings
	. Evaluation of Forward Rendering
	. Evaluation of Inverse Rendering
	. Evaluation of Relighting
	. Applications

	. Discussion
	. Experimental Settings
	. Additional Results

