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Supplementary Material

1. Additional results
iPhone dataset. We show qualitative comparison of tem-
poral consistency at novel view on the iPhone dataset [2]
in Fig. 4, 5, 6, 7. Our method demonstrates better overall
temporal consistency.
Nvidia dataset. We show per-scene quantitative results of
novel view synthesis on the Nvidia dataset [8] in Tab. 1, and
qualitative results in Fig. 1.
Ablation studies. We show qualitative results of ablation
studies in Fig. 2.

2. Additional training details
2.1. Loss functions and weights
Here, we provide a detailed explanation for each term of the
loss in main text Eq. 7.

RGB loss Lrgb, mask loss Lmask, and depth loss Ldepth,
ensure that the rendered image, foreground mask, and depth
to match their respective ground truth in a pixel-wise man-
ner. The RGB loss Lrgb is a combined MSE (mean squared
error) loss, D-SSIM [11] loss, and LPIPS [15] loss between
the rendered image and the ground truth, weighted 0.8, 0.2,
and 0.01, respectively. Mask loss Lmask computes MSE
between rendered mask and the mask predicted via [12]
with weight of 1.0. For the depth loss Ldepth, we include
an MSE term weighted 0.5, and following [10], apply a reg-
ularization to the gradient of the rendered depth, weighted
1.0.

The tracking loss Ltrack supervises the rendered tracks
to match the unprojected 2D tracks from [1]. Follow-
ing [10], we compute Ltrack as a combination of Ltrack→2d

and Ltrack→depth, with respective weights of 2.0 and 0.1.
Ltrack→2d is the MSE loss between between rendered 2D
tracks and the 2D tracks from [1] on normalized pixel coor-
dinates, while Ltrack→depth is the MSE loss between the
reprojected depths of the rendered tracks and the metric
aligned depths from [13].

The rigidity loss Lrigid is calculated as:

Lrigid =
∑

i↑N

∑

j↑KNN(i)

(
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)
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where x↓,t and T↓,t denote node’s position at time t and
its deformation from the canonical frame to time t, respec-
tively. ! denotes time interval within the sampled batch.

The set of nodes is denoted by N , while KNN(i) refers
to the K-nearest neighbors of the ith node, determined
by curve distance. The initial weight of Lrigid for first-
level nodes is 0.5. Once second-level nodes are activated,
the weight for first-level nodes is increased to 2.5, while
second-level nodes are assigned a weight of 0.5.

We also include regularization terms for the acceleration
of motion bases, the acceleration of rendered tracks, and the
scale of Gaussians as [10], with respective weights of 0.1,
2.0, and 0.01. In addition, the radius of nodes are regular-
ized to be no larger than the average distance to its three
nearest neighbors. The weight of this regularization is set
to 0.0001.

2.2. Optimization

We use Adam [4] to optimize HiMoR and Gaussians in
canonical frame jointly. The learning rates for mean, opac-
ity, scale, rotation, and color of each Gaussian are set to
1.6↓ 10→4, 1↓ 10→2, 5↓ 10→3, 1↓ 10→3, and 1↓ 10→2,
respectively. The adaptive density control of Gaussians pro-
posed in original 3DGS paper [3] is also applied. The learn-
ing rate for motion bases is set to 1.6↓ 10→4. The learning
rates for position, radius, and motion coefficients of each
node are set to 1.6↓10→5, 5↓10→4, and 1↓10→2, respec-
tively. We train our method using a single V100 GPU with
32GB of VRAM. The total training time is approximately
3↑ 6 hours for the iPhone dataset [2], and about 1 hour for
the Nvidia dataset [8].

3. Evaluation details
For iPhone dataset [2], we use the preprocessed dataset
provided by [10]. For Nvidia dataset [8], we use scripts
provided by [10] to generate foreground masks, 2D tracks,
and monocular depth maps. The monocular depth maps are
aligned with per-frame scale and shift factor computed us-
ing the point cloud estimated by running COLMAP [7] on
all 12 calibrated cameras as [9]. The results of each base-
line are produced using the respective public code with its
original settings.

4. Formulation of CLIP-I and CLIP-T
CLIP-I is the cosine similarity between the CLIP embed-
dings [6] of the rendered image and the ground truth, while
CLIP-T is the cosine similarity between frames with certain
interval to assess temporal consistency. CLIP-I and CLIP-T



Method Balloon1 Balloon2 Jumping Playground

PSNR → SSIM→ LPIPS ↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑

T-NeRF [2] 23.152 0.7498 0.11402 23.475 0.8322 0.09172 20.011 0.6922 0.15557 16.902 0.5438 0.20163
HyperNeRF [5] 22.576 0.7354 0.09916 23.933 0.8501 0.07770 20.279 0.7148 0.14790 16.521 0.5283 0.20321
Deformable 3DGS [14] 15.912 0.2753 0.46370 15.126 0.3071 0.41394 16.685 0.4525 0.34131 12.878 0.3193 0.37822
Marbles [9] 23.377 0.7843 0.07810 23.422 0.8046 0.08843 19.997 0.6545 0.14920 16.944 0.5757 0.15507
SoM [10] 23.692 0.7919 0.06336 23.037 0.8155 0.07606 19.906 0.6692 0.17004 16.976 0.5745 0.15110

Ours 23.901 0.7978 0.06200 23.483 0.8261 0.07540 20.042 0.6910 0.15978 17.125 0.5784 0.14942

Method Skating Truck Umbrella Mean

PSNR → SSIM→ LPIPS ↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑

T-NeRF [2] 27.177 0.8937 0.05666 27.363 0.8588 0.06407 24.609 0.6528 0.11780 23.241 0.7462 0.11450
HyperNeRF [5] 27.085 0.9080 0.05555 27.632 0.8663 0.06536 24.631 0.6584 0.10668 23.237 0.7516 0.10794
Deformable 3DGS [14] 19.310 0.5504 0.27465 18.209 0.4334 0.18731 17.263 0.2807 0.31782 16.483 0.3741 0.33956
Marbles [9] 27.488 0.8905 0.05698 27.127 0.8580 0.05558 24.309 0.6714 0.08876 23.238 0.7541 0.09603
SoM [10] 27.530 0.9141 0.05514 27.569 0.8738 0.04830 24.318 0.6567 0.09221 23.290 0.7565 0.09374

Ours 27.561 0.9151 0.05803 27.400 0.8761 0.04862 24.295 0.6504 0.10269 23.401 0.7621 0.09370

Table 1. Quantitative results of novel view synthesis on the Nvidia dataset [8].

Training view Novel view (GT) T-NeRF HyperNeRF Def. 3DGS Marbles SoM Ours

Figure 1. Qualitative results of novel view synthesis on the Nvidia dataset [8]. From the top are “Balloon1”, “Balloon2”, “Jumping”,
“Playground”, “Skating”, “Truck”, and “Umbrella”.

are defined as follows:

Sim (vi,vj) =
vi · vj

→vi→→vj→
, (2)

CLIP↑ I = Sim
(
E(Ît), E(It)

)
, (3)

CLIP↑ T = Sim
(
E(Ît), E(Ît+!)

)
, (4)

where E(·) denotes the CLIP encoder, It denotes the ground
truth image, and Ît refers to the rendered image. ! specifies
the temporal interval between frames for CLIP-T.

5. Additional ablations

We provide additional ablations studies on the number of
motion bases and the number of nodes, and an explanation
about the number of levels. In our default setting “[10, 5]
(ours)”, the initial number of first-level nodes is 50, which
increases to approximately 130 after densification. The
number of motion bases shared among first-level nodes is
set to 10. When activating second-level nodes, 10 nodes
are assigned to each first-level node and 5 motion bases are



Training view Novel view (GT) Baseline + Motion bases + Hierarchical + Rigidity loss + Node
structure densification (Full)

Figure 2. Qualitative results of ablation studies.

Method CLIP-I↔ CLIP-T↔ LPIPS ↗ PCK-T↔
[20, 5] 0.8828 0.9654 0.3627 0.9147
[5, 5] 0.8842 0.9639 0.3696 0.8910
[10, 8] 0.8909 0.9640 0.3667 0.9171
[10, 2] 0.8795 0.9646 0.3675 0.9068
[10, 5] (half) 0.8853 0.9656 0.3664 0.8971
[10, 5] (double) 0.8824 0.9638 0.3646 0.9201

[10, 5] (ours) 0.8853 0.9658 0.3696 0.9158

Table 2. Ablation study on the number of motion bases and nodes.
The values inside “[]” represent the number of motion bases for
first-level and second-level nodes, respectively. For example, “[10,
5]” indicates that first-level nodes share 10 motion bases, while
second-level nodes under the same parent share 5 motion bases.
“(half)” denotes that the number of first-level nodes is halved com-
pared to “(ours),” while “(double)” denotes that the number of
first-level nodes is doubled compared to “(ours).” Note that, the
number of second-level nodes assigned to each first-level node is
unchanged.

shared among those nodes under the same parent node.
Number of motion bases. We evaluate the sensitivity of
performance to the number of motion bases. The results are
shown in the first four rows of Tab. 2. Increasing the number
of motion bases for first-level nodes has minor impact on
overall performance, while reducing motion bases for first-
level nodes leads to a loss of detail in the training views,
as shown in Fig. 3. For second-level nodes, using more
motion bases improves the quality of novel view synthesis
increased but compromises temporal consistency. When the
motion bases for second-level nodes is fewer, it can intro-
duce some subtle distortions, resulting in a lower CLIP-I.

Training view [5, 5] [10, 5] (half) [10, 5] (ours)

Figure 3. Qualitative results of additional ablation studies on the
number of motion bases and nodes. Using fewer motion bases at
the first level or fewer nodes in total result in a loss of detail in the
training view (i.e., hand).

Based on the above analysis, we find our default setting to
be reasonable.
Number of nodes. We vary the number of first-level nodes
to exam the impact of the number of nodes. As prede-
fined number of second-level nodes and motion bases are
assigned to each first-level nodes, the number of first-level
nodes determines the complexity of HiMoR. The results
are shown in “[10, 5] (half)” and “[10, 5] (double)” of
Tab. 2When the number of first-level nodes is halved com-
pared to original settings (ours), PCK-T decreases, suggest-
ing a lost of details in the training views as Fig. 3. Con-
versely, doubling the number of first-level nodes results in
reduced CLIP-I and CLIP-T, likely due to the increased de-
grees of freedom.
Number of levels. We only use two levels of nodes in our
experiment due to the limited number of foreground Gaus-
sian. Current child nodes initialization strategy involves
performing K-Means clustering to the relative deformation
of the Gaussians within each parent node’s radius. How-



ever, when the number of Gaussian inside parent node’s ra-
dius is limited (i.e., less than the number of K-Means clus-
ters), current child nodes initialization strategy may fail.
Moreover, increasing the quantity of nodes might not al-
ways prove beneficial as the number of Gaussians per node
can be significantly small, making the node-based defor-
mation close to per-Gaussian deformation. However, from
the algorithmic perspective, we believe that the additional
levels of nodes can become more effective in larger scale
scenarios or more complex movements.
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Figure 4. Qualitative comparison of temporal consistency at novel view on the scene “Apple” of iPhone dataset [2]. The time interval of
adjacent images is ten frames.
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Figure 5. Qualitative comparison of temporal consistency at novel view on the scene “Block” of iPhone dataset [2]. The time interval of
adjacent images is ten frames.
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Figure 6. Qualitative comparison of temporal consistency at novel view on the scene “Paper-windmill” of iPhone dataset [2]. The time
interval of adjacent images is ten frames.
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Figure 7. Qualitative comparison of temporal consistency at novel view on the scene “Teddy” of iPhone dataset [2]. The time interval of
adjacent images is ten frames.
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