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1. Guideline of Supplementary

In this supplementary, in Sec. 2, we first provide more dis-
cussion of the non-co-occurrence (NCO) problem among
Incremental Object Detection (IOD), Incremental Seman-
tic Segmentation (ISS), and Incremental Object Keypoint
Learning (IKL) to highlight the novel contribution to resolv-
ing the NCO issue in IKL.

in Sec. 3, we first provide further discussions on the
different purposes of our two distillation losses designed
for the Stage-II training in our proposed KAMP method,
i.e., our Knowledge Association loss ℓKA created by the
KA-Net and our Keypoint Spatial-oriented Distillation loss
ℓKSD created by the old model mt−1.

In Sec. 3.1, we empirically compare the performance of
the KA-Net and the old model mt−1 on predicting the old
keypoints selected in Stage-I and show that they are not
similar, as the anatomical prior captured in our KA-Net can
further improve the estimations of related old keypoints.
This further verifies that the loss ℓKA by KA-Net and the
loss ℓKSD by the old model may perform different kinds of
knowledge distillation in Stage-II.

As mentioned in our main paper Sec. 4.2, in Sec. 3.2
and 3.3, we provide the ablation study on the Head-2023
dataset and also test our method on other network back-
bone. In Sec. 3.4, we provide further ablation study that
trains the KA-Net with the ground truth label of the selected
old keypoint instead of using the old model mt−1 to provide
the pseudo-label, where their performances are almost the
same, demonstrating that it is not critical to use completely
accurate labels to train KA-Net to achieve great results for
our method in IKL.

In Sec. 3.5, we also provide further ablation study on
only using the loss ℓKA without the loss ℓKSD in Stage-II
training of our method, where we show that it is necessary



to use both the loss ℓKA and ℓKSD simultaneously given
their different functionalities and complementary property.

Then, we discuss the limitations of our proposed method
in Sec. 4, as mentioned in our main paper Sec. 4.3. In
Sec. 5, we discuss the extreme case when only one new key-
point is considered for constructing the KA-Net in Sec. 5.1
as mentioned in our main paper Sec. 3.2.1, and more de-
tails of the KA-Net. We further provide concrete examples
of constructing the auxiliary task in Sec. 5.3, and provide
discussion and ablation study of different Softmax alterna-
tives in Sec. 5.4 and 5.5 respectively.

As mentioned in our main paper Sec. 4, starting from
Sec. 6, we provide more dataset statistics and experimen-
tal details in Sec. 6.2 and include per-step performance and
the standard deviation of each dataset in our main paper’s
Table 1 in Sec. 6.4. In Sec. 6.1, we provide more details
of our evaluation metric as mentioned in our main paper
Sec. 4. In Sec. 6.3, we provide more details of our adapta-
tion for the low-shot regime as mentioned in our main pa-
per Sec. 4.3. The details of the keypoint group and analysis
of the α are included in Sec. 6.6 and Sec. 6.5 respectively, as
mentioned in our main paper Sec. 4. We also report more
results over a balanced experimental protocol in Sec. 6.7,
and another challenging experimental protocol when old
keypoints are all from the human upper body and new key-
points are all from the human lower body in Split MPII in
Sec. 6.8. Then we provide more experimental details about
the comparison experiments between IKL and other alter-
native settings (i.e., CC2D [38], EGT [39], UKL [13], and
CAPE [29]) in Sec. 6.9 as mention in main paper Sec. 4.3.
Finally, we present the per-keypoint transfer metric of Split
ATRW after three incremental steps in Sec. 6.10 as men-
tioned in our main paper Sec. 4.1, and more visualization
results in Sec. 6.11.

2. More Discussion of the non-co-
occurrence (NCO) problem among In-
cremental Object Detection (IOD), In-
cremental Semantic Segmentation (ISS)
and Incremental Object Keypoint Learn-
ing (IKL)

While the non-co-occurrence (NCO) problem exists in IOD,
ISS, and IKL, the nature and implications of NCO are fun-
damentally different: (1) In IOD/ISS, NCO affects discrim-
ination between distinct object categories (e.g., cat & dog).
The challenge is primarily about maintaining class bound-
aries when old classes are not labeled in new data. (2)
In IKL, NCO manifests within the same object category,
where new and old keypoints have inherent anatomical and
physical relations. The challenge is not class discrimina-
tion, but capturing these intrinsic relationships to improve
keypoint estimation.

This unique context of NCO in IKL motivated our novel
technical solution: KAMP explicitly models and leverages
the relationships between old and new keypoints, improving
the estimation of both beyond mere anti-forgetting. This ap-
proach is specifically designed for the keypoint estimation
context and differs fundamentally from IOD/ISS solutions.

3. Different Proposes of Knowledge Distillation
between ℓKA and ℓKSD in the Stage-II.

As stated in our main paper Sec. 3.2.1, in Stage-II train-
ing, the Knowledge Association loss ℓKA is created by the
frozen KA-Net, which is learned in Stage-I to capture the
implicit anatomical and physical prior between the related
old and new keypoint. We leverage ℓKA in Stage-II to distill
the keypoint association knowledge to further improve the
selected old keypoints in KKA defined in our main paper
Sec. 3.2.1.

While for the loss ℓKSD, as stated in our main paper
Sec. 3.2.2, since the loss ℓKA only applies to the selected
old keypoints to distill their keypoint association knowl-
edge instead of mitigating the forgetting of all the keypoint,
thus the loss ℓKSD is used to distill the old model’s knowl-
edge during Stage-II training to consolidate the knowledge
for all the keypoints to avoid catastrophic forgetting.

Therefore, in Stage-II training, for the selected old key-
point (orange in Fig. 1), they are supervised by both the
loss ℓKA and ℓKSD, where the loss ℓKA is for distilling
their new knowledge of the keypoint association with the re-
lated new keypoints, and the loss ℓKSD is for distilling their
previous knowledge from the old model mt−1. For other
old keypoints, they are all supervised by the loss ℓKSD for
knowledge consolidation.

One may be concerned about two factors: (1) As both
the KA-Net and old model can predict the selected old
keypoints, it would be interesting to see whether the KA-
Net may be similar to the old model mt−1 on predicting
the selected old keypoints such that the KA-Net may not
provide a different distillation effect for the the selected
old keypoints compared to the old model during Stage-
II. (2) As the KA-Net is trained by the pseudo-label pro-
vided by the old model mt−1 in Stage-I since we will not
label the previously-learned old keypoints during IKL, then
given that the prediction from the old model is not as per-
fect as the ground-truth label, it would be also interesting to
see whether the performance of our propose KAMP method
may be influenced by the training of the KA-Net.

To study these two concerns, we first empirically explore
the first concern in Sec. 3.1 by comparing the performance
of the selected old keypoints based on the KA-Net and the
old model mt−1. We show that the KA-Net is not similar to
the old model, and the KA-Net can achieve much better per-
formance on the selected old keypoints than the old model.
Then in Sec. 3.4, we train the KA-Net with the ground-truth



Figure 1. Overview of KAMP using the human body for illustration. In Stage-I, we learn an auxiliary KA-Net to associate the related old
and new keypoints based on their local anatomical constraint. In Stage-II, we jointly leverage the old model and the KA-Net as an auxiliary
teacher to consolidate all old keypoints’ prediction and also learn the new keypoints simultaneously to achieve mutual promotions.

labels of the old keypoints to see whether it is critical to use
very accurate and perfect supervision for training the KA-
Net. Our empirical results demonstrate that there is almost
no difference between the performance of our KAMP when
the KA-Net is either supervised by the pseudo-label from
the old model mt−1 or by the ground-truth label, which im-
plies that it is not critical to use completely accurate labels
to train the KA-Net to achieve great results.

3.1. Difference between the Performance of the KA-
Net and the Old Model on Predicting the Old
Keypoints Selected in Stage-I.

As mentioned in Sec. 3, here we explore the performance
difference between the KA-Net and the old model mt−1 on
predicting the selected old keypoints by using the 5-Step
Split MPII protocol. As shown in the Tab. 1, our KA-Net is
not similar to the old model on predicting the selected old
keypoint, and our KA-Net are all better than the old model
on predicting the old keypoints selected in each incremental
step. This is because, as stated in our main paper Sec. 3.2,
the selected old keypoint predicted by the KA-Net is condi-
tioned on the newly-defined keypoints that are not defined
when training the old model. Thus, compared to the predic-
tion from the old model, the prediction of the selected old
keypoint from the KA-Net is supplemented with the new
anatomical knowledge between the old and new keypoint.
Such a physical prior can support the old keypoint predic-
tion by constructing a local constraint to improve the pre-
diction robustness of the old one, and thus, the prediction
from the KA-Net for the selected old keypoint is better than
the corresponding prediction from the old model.

Therefore, given the difference between the KA-Net and
the old model, the KA-Net can further serve as an auxil-
iary teacher that is different from the old model in Stage-II
training to further improve the performance of our KAMP
method, which has been verified in our ablation study in our
main paper’s Sec. 4.2 and Tab. 2.

SOK in each step Step-1 Step-2 Step-3 Step-4

Old Model mt−1 64.39 68.27 77.32 95.70

KA-Net 67.36 72.78 83.90 96.32

Table 1. Comparison between the old model mt−1 and our KA-
Net on predicting the Select Old Keypoint (SOK) in each incre-
mental step in 5-Step Split MPII.

3.2. Ablation study on Head-2023 (main paper
Sec. 4.2)

As mentioned in our main paper Sec. 4.2, here we repli-
cate the ablation study of Tab. 2 in our main paper on Split
Head-2023. As shown in Tab. 2, we can achieve the same
conclusion stated in our main paper’s Sec. 4.2.

Method A-MRE4 ↓ AT4 MT4

LWF [24] 4.31 -1.26 0.57

KAMP (only ℓKSD) 3.29 -0.12 0.63

KAMP (Random KA-Net) 2.93 0.08 0.73

KAMP (Ours) 2.32 0.41 0.84

Table 2. Ablation Study on Split Head-2023

3.3. Ablation study on different backbone other
than HR-Net (main paper Sec. 4.2)

As stated in our main paper Sec. 3, our KAMP design is
general, versatile, and usable with various backbones [3, 14,
15, 23, 25, 35, 36]. Here, we leverage one of the state-of-
the-art methods, i.e., Residual Steps Network (RSN) [3], as
our backbone, and we can achieve 81.45% AAA4 on Split
MPII, which further outperform 79.93% obtained by using
HRNet backbone in our Table 1 in the main paper. This
verifies the generality of our proposed KAMP method.



3.4. Train KA-Net with Ground-truth Labels.
As mentioned in Sec. 3, here we further explore whether
it is critical to use completely accurate supervision to train
the KA-Net to achieve a great result for our KAMP method.
As shown in Tab. 3, we can observe that even if we use the
ground-truth labels of the selected old keypoint to train the
KA-Net, the overall average performance (AAA4) of 5-Step
Split MPII (79.97%) is almost the same as Ours (79.93%)
that uses the pseudo-label provided by the old model mt−1.
This shows that it is not so critical to use completely accu-
rate labels to train the KA-Net to achieve great results.

5-Step Split MPII

Method AAA4 AT4 MT4

Ours (KA-Net trained by GT) 79.97 1.70 5.63

Ours 79.93 1.80 4.23

Table 3. Training the KA-Net by using the pseudo-label provided
by the old model mt−1, i.e., Ours, and by using the corresponding
ground truth (GT) labels, i.e., Ours (KA-Net trained by GT).

Method AAA4 AT4 MT4

LWF [24] 75.75 -3.86 0.41

KAMP (only ℓKA) 54.46 -12.74 -3.45

KAMP (only ℓKSD) 76.93 -2.24 0.65

KAMP (Ours) 79.93 1.80 4.23

Table 4. More Ablation Study on 5 Step Split MPII.

3.5. The Necessity of Using ℓKA and ℓKSD Simulta-
neously.

As we mentioned in our main paper Sec. 3.2.2, we empha-
size that only the loss ℓKA is not enough to mitigate the
forgetting of all the old keypoints, since the loss ℓKA is
only applied to the selected old keypoint and its function-
ality is only to distill the keypoint association knowledge to
improve the predictions of selected old keypoints. Thus the
usage of the loss ℓKSD is necessary as its functionality is to
consolidate the knowledge of all the old keypoints based on
the old model mt−1 to mitigate the forgetting problem. To
verify this claim, we extend the ablation study in our main
paper Sec. 4.2 and Tab. 2, where we add one more experi-
ment, i.e., only using the ℓKA without the ℓKSD in Stage-II
training. The results are shown in Tab. 4, and we can ob-
serve that with only ℓKA in Stage-II training, the old key-
points are catastrophically forgotten on 5-Step Split MPII.
Only when we use both the loss ℓKA and ℓKSD simulta-
neously, i.e., Ours, can we achieve the best result. This
demonstrates that the different functionalities of the loss
ℓKA and ℓKSD make it necessary to use them simultane-
ously such that we can effectively mitigate the catastrophic

forgetting of the old ones and then further improve them.
By comparing the alternative of only using the loss ℓKSD in
Stage-II and Ours, we can see that the loss ℓKA is comple-
mentary to the loss ℓKSD as adding the loss ℓKA to the loss
ℓKSD can help us further achieve larger improvement on
both the average performance (i.e., AAA4) and the old key-
points (i.e., AT4 and MT4). This further implies the com-
plementary property of the loss ℓKSD and ℓKA.

4. Discussions of the Limitations. (main paper
Sec. 4.3)

As mentioned in our main paper’s Sec. 4.3, since we do not
have the ground-truth labels for the old keypoints, thus we
leverage the old model’s prediction of the old keypoints as
the pseudo-label to supervise the KA-Net. However, there
would be a concern that the old model’s prediction may not
be accurate enough to provide supervision as good as the
ground-truth label for the old keypoints.

Our discussions towards this concern are two-fold: (1) in
this paper, we actually do not need the KA-Net to be perfect
enough to be an auxiliary teacher for the old keypoints. In-
stead, we hypothesize that even a not strong enough teacher
like KA-Net could already benefit the IKL since the KA-Net
has different functionality, i.e., it is used to implicitly distill
the knowledge of keypoint association into the new model
during the IKL. Our empirical study in both the main pa-
per and our supplementary all verified our hypothesis since
all the experiments were conducted without concern about
whether the KA-Net is strong enough to predict the old key-
points. The empirical result in Sec. 3.4 and Tab. 3 further
supports that the completely accurate supervision for train-
ing the KA-Net is not critical to achieving great results for
our method in IKL. (2) In the future, we can further explore
leveraging the technique of uncertainty estimation to filter
out those uncertain predictions from the old model when
training the KA-Net, such that we can prevent the poten-
tial low-quality old keypoints’ predictions from unstabiliz-
ing the training of KA-Net.

Lastly, regarding our adaptation to the low-shot regime,
we employ the same training strategy as outlined in [38]
to train an auxiliary model in a self-supervised manner.
This model is then used to pseudo-label new keypoints
when only a few annotations are available in the new data.
Consequently, as demonstrated in Tables 3 and 4 of our
main paper, the quality of our pseudo-labeling may be con-
strained by the limitations of [38] in extreme 1-shot and/or
5-shot scenarios. We anticipate that these limitations could
be overcome with future developments in self-supervised
learning. Furthermore, it’s important to highlight that our
adaptation strategy is primarily introduced to demonstrate
the feasibility of our KAMP method in extremely low-shot
conditions and to provide a comparative analysis with other
low-shot methods. However, in practical applications where



high accuracy in keypoint detection is crucial, such as in
medical analysis, we generally prefer algorithms that can
scale performance with an increase in available labels. In
this regard, our KAMP method is advantageous over other
alternatives. It not only performs better in low-shot sce-
narios but also scales more effectively with additional la-
beled data. For example, labeling 10 to 50 images, which
is a manageable task even in medical contexts, can signifi-
cantly enhance the training of a reliable keypoint detector.
As shown in Tables 3 and 4 of our main paper, our KAMP
method uniquely scales up with more labels, making it a
more favorable option for real-world applications compared
to other alternatives.

5. More Analysis of the Proposed Method.
5.1. Extreme Case When Only Considering One

New keypoint for Constructing the KA-
Net. (main paper Sec. 3.2.1)

As mentioned in our main paper Sec. 3.2.1, the auxiliary
task construction for the KA-Net can also be created like
this: P (Kold

j ) = F (P (Knew
1 ), P (Kold

i )), where when we
only have one new keypoint Knew

1 that is related to the old
keypoint Kold

j , we can consider other old keypoint Kold
i that

it is also related to Kold
j and Knew

1 . This shows the gener-
ality of our proposed method in that it is still feasible when
the extreme case occurs, e.g., only one new keypoint is in-
troduced. To empirically verify the feasibility, we provide
a case study using Split MPII and only introduce one new
keypoint in each incremental step, as shown in Tab. 5. We
can observe that our method can still achieve a positive av-
erage transfer and positive maximal transfer under such an
extreme scenario, where we still outperform the competitive
baseline, i.e., LWF [24], with a large margin.

5-Step Split MPII

Method AAA4 AT4 MT4

LWF [24] 75.75 -3.86 0.41

KAMP (Ours) 79.14 1.41 4.74

Table 5. Results when only one new keypoint is considered for
constructing the KA-Net.

5.2. More Details of the KA-Net
As described in our main paper’s Sec. 3.2.1, we extract the
spatial-oriented features for each new keypoints that are the
input of the KA-Net. As we want the KA-Net to capture
the keypoint association between the related old and new
keypoint, thus the KA-Net needs to have the capability of
modeling the spatial correlation between those keypoints.
Therefore, we use a large convolution kernel to capture the
long-range correlation between the old and new keypoints’

visual features: for the first two convolutional layers in KA-
Net, their kernel size is 15×15, and the padding size is 7.
The last convolution layer is for generating the heatmap pre-
diction of the old keypoint, and hence its kernel size is 1×1
and padding size is 0.

5.3. Concrete Examples of Task Constructions.

In our main paper Sec. 3 and as shown in Fig. 1, when we
consider a category for keypoint estimation, it is feasible to
create an auxiliary prediction task based on a general object
anatomy diagram. These diagrams are readily available on
the internet, and a human can interpret them by understand-
ing the semantic meanings of both old and new keypoints.
In some medical imaging applications, a doctor may need
to clarify the definition of keypoints, but this is a one-time
task and is significantly faster than having a doctor label
every image.

Utilizing a general object anatomy diagram for keypoint
association eliminates the need to label training images to
learn which keypoints should be associated, thus saving
substantial annotation and training costs. This approach
also provides an interpretable and flexible method for hu-
mans to apply physical knowledge of an object category to
facilitate incremental learning for the first time. We com-
pare this method with an alternative that involves feeding
new data to the old model to obtain pseudo-locations of all
old keypoints, and then measuring the relative distances be-
tween new and old keypoints to create the auxiliary task.
Our method not only reduces the time required from 5.42
minutes to 0.594 seconds but also improves the AAA4 from
78.82% to 79.93% for the Split MPII dataset. This im-
provement is due to the fact that the pseudo-locations pre-
dicted by the alternative method may be incorrect, leading
to improper creation of the auxiliary task.

To provide concrete examples, Fig. 2 (a), (b), and (c)
show that an object anatomy diagram can be easily found
online. Since we use this diagram only to identify the prox-
imity of relative locations between old and new keypoints, it
can be quite general. Based on this diagram, when learning
new keypoints, we first locate both old and new keypoints
on the diagram, as illustrated in Figure 2 (d), using their se-
mantic definitions. We then iterate over each old keypoint to
find the two closest newly defined keypoints, such as the or-
ange keypoint in Figure 2 (d). Using these three keypoints,
i.e., the orange one and the two green ones in Figure 2 (d),
we construct the auxiliary prediction task for training the
KA-Net.

This task creation can also be automated by GPT-4o as
shown in Fig. 1. We only need to create the prompt to
provide the name of the old keypoints that the model has
learned previously and the name of the newly-defined key-
point. The prompt template is shown in Fig. 3. Empiri-
cally, we found that GPT-4o outputs the same task tuple as



Figure 2. Illustration of the diagram for different objects, e.g., human and tiger body in (a) and (b), and the Cephalometric analysis [8]
in (c). All the diagrams of each object category are readily found on the Internet. (d) is an example to demonstrate how we leverage the
general diagram, e.g., the human skeleton diagram, to construct the auxiliary prediction task for training the KA-Net in IKL.

Figure 3. Illustration of the prompting template using the human
body as an example to query GPT-4o to create this auxiliary task.

humans identified for all our experiments, making it a fea-
sible solution to replace the human. The inference cost of
prompting the GPT-4o is negligible.

5.4. Difference between Softmax Alternatives (main
paper Sec. 3.2.2).

As mentioned in our main paper Sec. 3.2.2, We pro-
vide the visualization to demonstrate the difference be-
tween the Softmax alternatives, as shown in Fig. 4. Since
most existing incremental learning (IL) literature uses im-
age classification as the default visual task to evaluate the
IL methods’ performance, thus in methods like LWF [24]
and its variants [5], when they calculate the negative log-
likelihood between the old and new model’s prediction for
the old classes, they all perform the Softmax across differ-
ence old classes to obtain the normalized class prediction
score. Such an operation in keypoint estimation is equiv-
alent to normalizing each pixel location across each key-

point’s heatmap prediction, as shown in Fig. 4 (a), which is
a channel-wise normalization.

However, for the keypoint estimation task, it is always
more critical to penalize the spatial-wise correctness for
each keypoint individually [12, 19, 20, 22]. Thus in the
present paper, given the task-oriented consideration, we ex-
plore the spatial-oriented knowledge distillation, where we
perform the softmax over the heatmap spatial dimension, as
shown in Fig. 4 (b), (c) and (d), where all these three op-
erations are only normalized each pixel’s value over each
heatmap itself. Such a principle is also called instance-wise
normalization. We will further provide the empirical study
in the next section.

5-Step Split MPII

Method AAA4 AT4 MT4

LWF [24] 75.75 -3.86 0.41

KAMP (SM-2D) 78.54 0.52 1.78
KAMP (SM-Height) 79.26 0.96 3.01
KAMP (SM-Width) 79.35 1.33 3.22

KAMP (Ours, Eqn. 5) 79.93 1.80 4.23

Table 6. Ablation study of different Softmax alternatives

5.5. More Ablation Study of Different Softmax Al-
ternatives (main paper Sec. 3.2.2)

In this section, we empirically explore whether those three
spatial-wise Softmax alternatives differ in practice. The re-
sults are shown in Tab. 6, where SM-2D denotes the Soft-
max alternative as Fig.4 (d), SM-Height represents the Soft-
max alternative as Fig.4 (b), and SM-Width represents the
Softmax alternative as Fig.4 (c), and Ours which averaging
the SM-Width and SM-Height as defined in our main paper
Eqn. (5).

We can observe that the SM-Width is slightly better than
the other two alternatives. By further analysis, we empiri-
cally find that for the SM-2D, we need to calculate the ex-
ponential function for all the pixels over a certain heatmap



Figure 4. Illustration of different alternatives of Softmax operation.

5-Step Split MPII

Method AAA4 AT4 MT4

Ours (α=10) 78.45 0.21 0.58
Ours (α=1000) 79.14 0.33 2.97

Ours (α=100) 79.93 1.80 4.23

Table 7. Analysis of α of the Eqn (4) in the main paper

and summarize them as the denominator of the Softmax op-
erator, which means we have total H×W terms in the de-
nominator. Such a large denominator makes the value of
each pixel small enough after the softmax, making the neg-
ative log-likelihood very small. This may further weaken
the knowledge distillation effect since its scale will be too
small and be less effective than the other two alternatives,
i.e., SM-Height and -Width. For the SM-Height, we can see
that in practice, it is only slightly worse than the SM-Width,
and we conjecture that the spatial prior may be more readily
consolidated via the width dimension. Finally, by combin-
ing the SM-Width and SM-Height as defined in our main
paper Eqn. (5), we achieve the best overall performance.

6. Experimental Details and More Results.
6.1. More details of Evaluation Metrics (main paper

Sec. 4)
As mentioned in our main paper, the Probability of
Correct Keypoint (PCK) [27, 31, 37] is defined as
PCK= 1

N

∑N
i=1 1

(
∥yi−ŷi∥2

d ≤ σ
)

, where a predicted key-
point location ŷi is corrected if the normalized distance be-
tween ŷi and the ground-truth location yi over the longest
side d of the ground-truth bounding box is less than the
threshold σ. For the MPII and ATRW datasets, we use their
defaulted σ as in [27, 29, 30].

For mean radial error (MRE) [38, 39], we adhere
to the definition in previous studies [38, 39], MRE =

1
N

∑N
i

√
(xi − x̃i)

2
+ (yi − ỹi)

2, where (x̃i, ỹi) denotes

the predicted location of the keypoint while (xi, yi) denotes
the ground-truth location. Since MRE measures the error
between the prediction and ground-truth, a smaller value
indicates better performance.

The definition of Average Transfer is: after step
i, the average transfer over all previous steps is
ATi= 1

i−1

∑i−1
j=1(ai,j − aj,j), where ai,j denotes the av-

erage accuracy (PCK) or error (MRE) of the keypoints
learned at step j after the training of step i. We time -
1 to the ATi when ai,j denotes error (MRE) since MRE
is smaller the better. The definition of Maximal Transfer
is: MTi=maxk∈Si

(Rk,i − γk), which represents the max-
imal performance change over all old keypoints after step
i, where Si denotes the set of old keypoints learned before
step i, Rk,i denotes the accuracy (PCK) or error (MRE) of
the old keypoint k after step i, and γk denotes the initial
accuracy (PCL) or error (MRE) of the old keypoint k when
it was first learned in IKL. And we also time MT with -1
when MT measures the MRE.

6.2. More Dataset Statistics and Experimental De-
tails. (main paper Sec. 4)

As mentioned in our main paper, we leverage the Head-
2023 [4], Chest [16], MPII [2], and ATRW [21] datasets
as our main testbed. For the Head-2023 dataset, we ran-
domly chose 20 held-out images as our validation set, and
randomly selected 80 held-out images as our test set. The
Chest dataset only contains 279 training images after filter-
ing by [41]. Given this small amount of training images, we
randomly chose 79 held-out images as our test set without
setting a validation set. Instead, we use the same training
hyperparameter searched by the validation set of Head-2023
to directly use on the Chest dataset, except for the loss scale
α as we use the same α scale as Split ATRW to ensure sta-
ble training. For the ATRW dataset, we randomly select 5%
held-out images as our validation set and another 5% held-
out image as our test set for the Split ATRW experiments,
given the lack of public ground-truth annotations for the of-
ficial ATRW test set.

For the Split MPII experiments, we leverage the SGD



optimizer, where we reduce the learning rate 10 times at 80
epochs. For Split Head-2023, Split Chest, and Split ATRW
experiments, we follow the default optimizer for them, i.e.,
the Adam [17], where γ1 = 0.99 and γ2 = 0. As mentioned
in our main paper, the total number of training epochs is 100
for all the methods. For our proposed method, we leverage
20 epochs for training the KA-Net in Stage-I, and we use
the remaining 80 epochs for our Stage-II training, such that
we can leverage the same number of epochs for both our
method and other compared methods for a fair comparison.

6.3. More Details for the adaptation of low-shot
regime. (main paper Sec. 4.3)

When our method needs to adapt for the low-data regime,
we follow the same training strategy as [38] to train another
auxiliary model in a self-supervised manner as [38] in the
initial step (t=0). Specifically, for a given input image, we
randomly select a point on the image and then randomly
crop a patch containing that point. The same data augmen-
tations as described in [38] are applied to this cropped im-
age patch. The input image and the augmented image patch
are then processed through two feature extractors, following
the training approach of [38]. In the low-shot MPII experi-
ment in Tab. 4 of our main paper, as we conventionally uti-
lize the top-down human pose detector [30], we first iden-
tify each human instance in the image through detection.
All detection results for the MPII dataset have been pre-
viously provided by top-down pose detectors like [9, 30].
Each detected human instance is then cropped from the im-
age, and these cropped images are used as inputs for training
the auxiliary model.

The training epoch for the auxiliary model is 100 and the
same learning rate as in Sec. 4 of our main paper. We use the
Adam optimizer with γ1 = 0.99 and γ2 = 0. Note that for
the compared method CC2D [38] and EGT [39] they also
have the same or similar self-supervised pertaining stage in
their method to adapt for the low-shot regime for keypoint
detection in medical images.

6.4. Standard Deviations of Tables 1 in Our Main
Paper (main paper Sec. 4).

As described in our main paper’s Sec. 4, we report the per-
step results and standard deviations of each dataset in Table
1 of our main paper in Tab. 11, Tab. 12, Tab. 13 and 14,
respectively, where we observe that our method enjoys rela-
tively more minor deviation and consistently outperform all
the comparison methods for all the datasets.

6.5. Analysis of α (main paper Sec. 4)
As mentioned in our main paper’s Sec. 4, in Tab. 7, we
further provide more analysis of the hyperparameter α in
Eqn. (4) in our main paper. For all our experiments in the
main paper and supplementary, we use the held-out valida-

tion set to determine the α, the same strategy as how we de-
termine the hyperparameters of all the comparison methods.
Generally, when the α is large, the knowledge consolidation
may dominate the Stage-II training in our proposed method,
and thus the acquisition of the new keypoint may be hin-
dered. While if the α is too small, the old keypoint may be
forgotten catastrophically in IKL. Therefore, there should
exist a proper α that can achieve a good balance between the
new keypoint acquisition and avoid the catastrophic forget-
ting of the old keypoints. Results in Tab. 7 empirically sup-
port our analysis, where we can see that when α increases
10 times from 10 to 1000, the proper α is over 100 (1e2)
that can achieve the proper average performance (AAA4).

6.6. Details of the Keypoint Group. (main paper
Sec. 4)

For the Head-2023 dataset, there are 38 keypoints: Nasal
root, Nasal bridge, Outer canthus, Inner canthus, Upper in-
cisal tip, Lower incisal tip, Chin tip, Anterior chin, Inferior
chin, Posterior chin, Lower anterior tooth plane, Upper an-
terior incisal point, Superior protuberance, Inferior protu-
berance, Lower jaw point, Pre-molar anterior chin, Poste-
rior nostril, Anterior nostril, Beauty midpoint, Center point
of the mandibular posterior platform, Upper central incisor
tip, Starting point of the mandibular incisor, Small lip spicy
point, Red point above the nose, Chin apex, Chin apex, Flat
base point, PT point, Bolton point, Upper lip fine point,
Lower lip fine point, Alveolar anterior chin point, Alveo-
lar inferior chin point, Chin point, Alveolar chin root point,
Chin point, Upper lip external point, Lower lip external
point. As mentioned in our main paper Sec. 4, we select
the first 19 keypoints as our first group and then splits the
rest of the keypoints into 4 groups, where we randomly se-
lect two or more keypoints for each incremental step. For
the Chest dataset [16, 41], it contains six keypoint as the
top, the bottom, and the right boundary point of the right
lung and the same three keypoints for the left lung.

For the MPII dataset, there are 16 human body key-
points: right ankle, right knee, right hip, left hip, left knee,
left ankle, pelvis, thorax, upper neck, head top, right wrist,
right elbow, right shoulder, left shoulder, left elbow and left
wrist. We randomly select five keypoints for the initial step,
i.e., Step-0, and then we randomly select two or more key-
points for each incremental step. The ATRW dataset has
15 keypoints of Amur Tiger: left ear, right ear, nose, right
shoulder, right front paw, left shoulder, left front paw, right
hip, right knee, right back paw, left hip, left knee, left back
paw, tail, and center. We randomly choose 6 keypoints
for the Step-0 of Split ATRW and then randomly choose
two or more keypoints for each incremental. For instance,
for the qualitative results shown in our main paper and the
supplementary, we chose the upper neck, left elbow, right
wrist, right knee, and left ankle for the Step-0 training of



Step-1

Method AAA1 AT1 MT1

EWC [18] 67.13 -19.69 0.14
RW [6] 59.12 -14.97 -9.62
MAS [1] 72.12 -5.27 0.44
LWF [24] 77.76 0.31 1.81
AFEC [32] 68.18 -4.16 -0.55
CPR [5] 77.08 0.49 1.33

KAMP (Ours) 79.17 1.94 3.34

Table 8. Result of the balanced setup
Split MPII; and we selected nose, tail, right back paw, left
back paw, right front paw, and left front paw as the keypoint
group introduced in Step-0 for the Split ATRW.

6.7. More Results of Another Setup: Balanced
Number of Old and New Keypoints.

For all the experiments before this section, in each incre-
mental step, the number of old keypoints introduced previ-
ously is always larger than the number of new keypoints in-
troduced in the current step. Under such a setting, methods
that can well preserve the performance of old keypoints will
outperform others since the performance of old keypoints
may dominate the average accuracy metric, i.e., AAA.

To provide a more comprehensive view of our method,
in this section, we consider a balanced setup where only one
incremental step is introduced, and the number of new key-
points is the same as the old ones. In such a balanced setup,
we can further see whether our method still has superiority
over other methods. As shown in Tab. 8, we can see that the
gap between each comparison method is smaller than the
gap we observed in our previous experiments. Our proposed
method still achieve the largest average accuracy (AAA)
positive average transfer (AT) among all the other methods.
This further demonstrates that the superiority of our method
is general and consistent over different experimental setups.

6.8. More Results of Another Setup: Old Keypoints
Only for the Upper Body, New Keypoints only
for the Lower Body in Split MPII.

To further explore whether our proposed KAMP method
can consistently perform well under different setups, here
we use the MPII dataset to create a 2-Step protocol where
the old keypoints are all from the upper body of the human
while the newly-defined keypoints are all from the lower
body. Such a scenario can be viewed as a kind of “extrap-
olation” as the keypoints of the lower body are all outside
of the upper body. There are not so many physical connec-
tions between the upper body and the lower body, and thus
the locations of the keypoints of the lower body may not be
highly related to the keypoints in the upper body. There-
fore such a protocol would be much more challenging than

our previous protocols. As shown in Tab. 9, compared with
the competitive method, CPR [5], our proposed method can
still achieve positive average transfer and maximal transfer
under this challenging protocol and also outperform CPR
with a large margin on the average performance. The ab-
solute value of the average transfer and maximal transfer
for our method is small, which is expected as explained
above. However, our method as a novel baseline for IKL
still demonstrates its superiority, and it is also promising
for us to explore better methods to further boost the perfor-
mance in the future.

AAA1 AT1 MT1

CPR [5] 81.48 -5.33 -0.42

Ours 84.53 0.04 0.63

Table 9. Experimental results when we first learn the keypoints all
from the upper body of the human and then incrementally learn
the new keypoints all from the lower body using the MPII dataset.

6.9. More Experimental Details about the Low-shot
Experiments between our IKL and other Al-
ternative Methods. (main paper line 580-581)

Here we provide more experimental details about the low-
shot experiments between our proposed IKL setting and
other alternative methods of our Sec. 4.3 in our main paper.
For the experiment on Head-2023, since both CC2D [38]
and EGT [39] have not trained on Head-2023, thus we use
the official implementation of them to run the experiment
on Head-2023 to get the results. All the training details are
the same as their original paper [38, 39].

For the unsupervised keypoint learning (UKL) [13] in
Split MPII, we choose the SOTA UKL method [13] to per-
form our experiments. We follow the same experimental
details in [13] to conduct the unsupervised pertaining on
the MPII datasets, where we pre-define the model to out-
put 32 keypoints without assigning any semantic mean-
ing for each one. Then after the unsupervised pretrain-
ing on each dataset, we follow the standard practice in
UKL [13, 26, 28, 40] that we freeze the unsupervised pre-
trained model and then learn a linear transformation be-
tween the pre-defined keypoints and each newly-defined
keypoint introduced in each incremental step.

For the category-agnostic pose estimation (CAPE) [7]
in Split MPII, we leverage its SOTA method, i.e., Meta-
Point+ [7], to conduct our experiments. We also follow the
same experimental details in [7], where we treat the key-
point categories related to humans (e.g., human body, face,
and hand) as the unseen category to avoid information leak-
age when performing the pertaining in CAPE. This is sim-
ilar to the cross super-category experiments in Sec. 4.3 in



[34]. The difference is that in our experiments, we need to
perform the testing on each keypoint group incrementally.

6.10. Per-keypoint Performance of Our Method un-
der the ATRW. (main paper Sec. 4.1)

As mentioned in our main paper’s Sec. 4.1, here we report
the per-keypoint’s performance of knowledge transfer af-
ter three incremental steps of Split ATRW. As shown in
Tab. 10, 6 over 13 old keypoints have non-negative trans-
fer after three incremental steps. This further verifies our
conjecture that there is much positive transfer occurring for
many old keypoints to offset the forgetting of other old key-
points such that our method can achieve a very small nega-
tive average transfer.

6.11. More Visualization Results. (main paper Fig. 4)
As mentioned in our main paper’s Fig. 4, we include more
visualization results in Fig. 5. Again, our method can
achieve more structurally correct keypoint prediction and
less miss-detection error than other comparison methods.
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Table 10. Per-keypoint performance transfer in Split ATRW after 3 incremental steps. KP is the abbreviation of keypoint.
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Step-1 Step-2 Step-3 Step-4

Method AAA1 AT1 MT1 AAA2 AT2 MT2 AAA3 AT3 MT3 AAA4 AT4 MT4
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RW [6] 58.85±0.79 -3.19±2.91 -0.41±0.007 51.12±1.78 -6.88±0.79 -0.66±0.14 43.44±0.05 -8.20±6.36 -0.89±4.46 38.47±2.65 -18.83±0.51 -7.13±3.72
MAS [1] 65.35±6.14 -6.97±7.06 -0.24±0.10 59.99±2.00 -13.85±2.59 -0.10±0.07 63.29±2.89 -9.91±3.7 0.00±0.17 67.03±1.65 -7.56±0.7 0.34±0.20
LWF [24] 71.23±0.46 -0.49±0.35 1.41±0.16 73.75±0.65 -1.03±0.60 0.28±0.17 74.69±0.56 -1.63±0.38 0.68±0.11 75.75±0.51 -3.86±1.76 0.41±0.31
AFEC [32] 63.54±0.79 -4.78±0.44 -1.50±0.41 52.98±3.2 -17.26±2.37 -7.33±1.87 47.25±8.18 -18.30±11.32 -6.17±8.77 37.24±0.05 -22.85±1.06 -15.42±0.07
CPR [5] 71.67±0.11 0.68±0.04 2.17±0.08 72.86±0.42 -2.42±0.30 0.61±0.16 73.95±0.36 -2.07±0.55 1.19±0.30 75.52±0.67 -3.24±1.00 0.75±0.62
SFD [11] 68.79±0.16 0.07±0.01 0.53±0.12 70.09±0.35 -0.98±0.33 0.71±0.12 71.15±0.38 -0.41±0.28 0.85±0.05 71.49±0.82 -0.93±0.52 0.21±0.08
WF [33] 69.92±0.19 0.08±0.13 0.76±0.06 70.94±0.29 -1.31±0.26 0.58±0.18 72.24±0.36 -1.65±0.07 1.54±0.14 72.87±0.39 -0.46±0.04 0.38±0.14
GBD [10] 71.94±0.06 0.18±0.06 1.76±0.09 72.69±0.26 -1.11±0.17 0.69±0.05 74.74±0.67 -0.10±0.38 0.64±0.18 75.62±0.18 -0.18±0.06 0.35±0.19

KAMP (Ours) 73.54±0.34 2.23±0.37 3.98±0.25 76.55±0.11 2.30±0.04 3.68±0.02 78.06±0.49 2.24±0.35 4.12±0.33 79.93±0.12 1.80±0.11 4.23±0.31

Table 13. Results on Split MPII after 5 Step IKL, starting from the same Step-0 trained model.

Step-1 Step-2 Step-3

Method AAA1 AT1 MT1 AAA2 AT2 MT2 AAA3 AT3 MT3

EWC [18] 40.33±4.06 -92.58±8.81 -81.71±3.76 25.19±2.63 -62.88±6.57 -17.28±6.75 14.38±1.01 -59.75±8.13 -2.08±1.6
RW [6] 82.90±0.32 -1.09±1.14 -0.56±0.61 84.14±1.63 -8.10±2.95 0.00±1.26 84.15±0.43 -10.87±2.61 0.00±1.12
MAS [1] 89.54±0.4 -7.26±0.45 -0.56±1.12 88.26±0.06 -5.80±0.22 -0.62±1.18 85.68±1.43 -5.80±4.31 -1.13±0.57
LWF [24] 90.45±0.19 -6.18±1.06 -4.52±1.69 89.15±0.61 -4.99±0.63 2.47±0.74 87.31±1.05 -5.10±2.83 -0.64±1.21
AFEC [32] 61.57±1.52 -30.46±0.05 -10.11±0.69 45.70±0.52 -35.75±1.16 -9.26±0.98 33.03±0.75 -40.25±0.88 -8.02±0.15
CPR [5] 90.86±0.36 -3.24±0.09 0.00±0.69 90.43±0.46 -2.22±1.39 1.85±0.78 89.34±0.73 -2.76±0.75 4.49±0.12
SFD [11] 88.98±0.36 -2.19±0.11 -0.42±0.69 87.54±0.47 -1.88±1.09 1.18±0.75 86.11±0.81 -1.13±0.21 0.41±0.98
WF [33] 90.16±0.24 -2.08±0.02 -0.35±0.52 88.63±0.38 -1.76±0.96 1.77±0.68 86.69±0.87 -0.97±0.29 0.62±0.54
GBD [10] 90.86±0.36 -3.24±0.09 0.00±0.69 89.03±0.18 -1.23±0.67 1.84±0.98 87.42±0.77 -0.89±0.30 0.65±0.25

KAMP (Ours) 93.21±0.76 -0.86±0.27 0.56±0.32 93.63±0.24 -0.34±0.21 3.08±0.61 93.16±0.34 -0.84±0.28 5.13±0.47

Table 14. Results on Split ATRW after 4 Step IKL, starting from the same Step-0 trained model.
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Figure 5. Visualization results on Split Head-2023, Split Chest, Split MPII and Split ATRW. All the methods start from the same Step-0
model, whose prediction is shown in the second column. GT denotes ground truth. The red circles denote the keypoints learned in Step 0,
while the green circles denote all the new keypoints learned in later steps. We observe that after the IKL, the compared methods (LWF and
CPR) may acquire the new keypoints as ours, but they have obvious miss-detection and wrong estimation (e.g., out of the body). While
our method can consistently associate the new and old keypoints and achieve structurally accurate keypoint predictions.
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