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A. Proof of Theorem 3.1
Theorem 3.1. Let B → Rp→r and A → Rr→q be two low
rank matrices in LoRA, then the expected sparsity of the
product matrix BA → Rp→q is given by:

E [sBA] = 1↑ (1↑ sBsA)
r. (12)

Proof. We aim to determine the expected proportion of
non-zero elements in the product matrix BA → Rp→q . The
element in the i-th row and j-th column of BA is given by

(BA)ij =
r∑

k=1

BikAkj . (13)

We will prove a stronger conclusion: we assume that all
elements in A and B are nonnegative. This assumption in-
creases the number of nonzero elements in BA, making it
more challenging to ensure the sparsity of BA.

Then an element (BA)ij is non-zero if and only if there
exists at least one k → {1, 2, . . . , r} such that both Bik and
Akj are non-zero. For each k, the probability that Bik is
non-zero is sB , and the probability that Akj is non-zero is
sA. Since the positions of non-zero elements in B and A
are independently and randomly distributed, the probability
that both Bik and Akj are non-zero is

P (Bik ↓= 0 and Akj ↓= 0) = sBsA. (14)
Therefore, the probability that BikAkj = 0 is

P (BikAkj = 0) = 1↑ sBsA. (15)
Assuming independence across different k, the probabil-

ity that all terms BikAkj are zero is

P
(

r⋂

k=1

{BikAkj = 0}
)

=
r∏

k=1

P (BikAkj = 0)

= (1↑ sBsA)
r .

(16)

Thus, the probability that (BA)ij is non-zero is
P ((BA)ij ↓= 0) = 1↑ P ((BA)ij = 0)

= 1↑ (1↑ sBsA)
r .

(17)

Since there are p↔q elements in BA, the expected num-
ber of non-zero elements is

E [NBA] = pq [1↑ (1↑ sBsA)
r] , (18)

where NBA denotes the number of non-zero elements in
BA.

The expected sparsity of BA is then

E [sBA] =
E [NBA]

pq
= 1↑ (1↑ sBsA)

r . (19)

The proof of Theorem 3.1 is finished.

B. Proof of Theorem 3.2
Theorem 3.2. Let B → Rp→r and A → Rr→q be two low
rank matrices in LoRA, where the sparsity of B is sB and
the sparsity of A is sA. Define C = BA, with sparsity sC .
Then, for any ω > 0:

P (|sC ↑ E[sC ]| ↗ ω) ↘ 2 exp

(
↑ 2ω2pq

r(p+ q)

)
, (20)

where the expected sparsity E[sC ] is given by Theorem 3.1

Proof. We aim to apply McDiarmid’s inequality to the total
number of nonzero entries N in C.

McDiarmid’s Inequality states that if X1, X2, . . . , Xn

are independent random variables taking values in a set X ,
and f : Xn ≃ R satisfies the bounded differences condi-
tion: for all i and all x1, . . . , xn, x↑

i → X ,
|f(x1, . . . , xi, . . . , xn)↑ f(x1, . . . , x

↑
i, . . . , xn)| ↘ ci,

then for all ε > 0,

P (f(X1, . . . , Xn)↑ E[f ] ↗ ε) ↘ exp

(
↑ 2ε2∑n

i=1 c
2
i

)
,

and similarly for P (E[f ]↑ f(X1, . . . , Xn) ↗ ε).
In our context, consider the function f representing the

total number of nonzero entries in C:

N =
p∑

i=1

q∑

j=1

Xij , (21)

where Xij is the indicator variable:

Xij =

{
1, if Cij ↓= 0,

0, if Cij = 0.
(22)

Each Cij depends on the random variables
{Bik, Akj}rk=1. The variables Bik and Akj are inde-
pendent and affect N through Cij .

We have the bounded differences:
Effect of changing Bik: Changing Bik can affect all Cij

where j = 1, . . . , q. The maximum change in N due to
changing Bik is cBik = q.

Effect of changing Akj: Changing Akj can affect all Cij

where i = 1, . . . , p. The maximum change in N due to
changing Akj is cAkj = p.

Therefore, the sum of the squares of the bounded differ-
ences is:∑

i,k

c2Bik
+
∑

k,j

c2Akj
= pr ·q2+rq ·p2 = rpq(p+q). (23)



Applying McDiarmid’s inequality, for any ε > 0:

P (N ↑ E[N ] ↗ ε) ↘ exp

(
↑ 2ε2

rpq(p+ q)

)
, (24)

and similarly for P (E[N ]↑N ↗ ε). Therefore,

P (|N ↑ E[N ]| ↗ ε) ↘ 2 exp

(
↑ 2ε2

rpq(p+ q)

)
. (25)

Since sC =
N

pq
, we have:

|sC ↑ E[sC ]| =
|N ↑ E[N ]|

pq
. (26)

Let ω =
ε

pq
, so ε = ωpq. Substituting back into the

inequality:

P (|sC ↑ E[sC ]| ↗ ω) ↘ 2 exp

(
↑ 2(ωpq)2

rpq(p+ q)

)

= 2 exp

(
↑ 2ω2pq

r(p+ q)

)
.

(27)

The proof of Theorem 3.2 is finished.

C. Proof of Theorem D.1
Theorem D.1. Consider matrices A → Rr→q and B →
Rp→r, where each row of B and each column of A ex-
hibit uniform sparsity internally but vary across rows and
columns, respectively, with average sparsities sA and sB .
Then, the expected proportion E[sC ] of nonzero entries in
the product matrix C = BA satisfies:

E[sC ] ↘ 1↑ (1↑ sAsB)
r. (28)

Proof. Consider any entry cij of the matrix C = BA,
which is computed as:

cij =
r∑

k=1

bikakj . (29)

To determine the probability that cij is nonzero, we ana-
lyze the sparsity of bik and akj .

For fixed i and j, we define: sBi is the sparsity of the
i-th row of B; sAj is the sparsity of the j-th column of A,.

For bik and akj , we have:
P(bik ↓= 0) = sBi , P(akj ↓= 0) = sAj . (30)

Since the positions of nonzero elements within the i-
th row of B and the j-th column of A are independently
and uniformly distributed, the events that bik and akj are
nonzero are independent for each k. Therefore, the proba-
bility that both bik and akj are nonzero is:

P(bik ↓= 0 and akj ↓= 0) = sBisAj . (31)
Same as the proof for Theorem 3.1, we prove a stronger

conclusion by assuming that all elements in A and B are
nonnegative. Thus, for cij = 0, it must hold that for all
k = 1, 2, . . . , r, either bik = 0 or akj = 0. Consequently,

the probability that cij = 0 is:

P(cij = 0) =
r∏

k=1

[1↑ P(bik ↓= 0 and akj ↓= 0)]

=
(
1↑ sBisAj

)r
.

(32)

Thus, the probability that cij is nonzero is:
Pcij ↓= 0) = 1↑ P(cij = 0)

= 1↑
(
1↑ sBisAj

)r
.

(33)

Therefore, the expected proportion of nonzero entries in
C is:

E[sC ] =
1

pq

p∑

i=1

q∑

j=1

[
1↑

(
1↑ sBisAj

)r]
. (34)

Note that for x → [0, 1] and r ↗ 1, the function f(x) =
(1 ↑ x)r is convex. According to Jensen’s Inequality, for a
convex function f and a random variable X , we have:

E[f(X)] ↗ f(E[X]). (35)
In our case, let the random variables be Xij = sBisAj ,

then:

E[X] =
1

pq

p∑

i=1

q∑

j=1

Xij

=

(
1

p

p∑

i=1

sBi

)

1

q

q∑

j=1

sAj





= sBsA.

(36)

Applying Jensen’s Inequality, we obtain:

1

pq

p∑

i=1

q∑

j=1

(
1↑ sBisAj

)r ↗ (1↑ sBsA)
r . (37)

That is:

1↑ E[sC ] =
1

pq

p∑

i=1

q∑

j=1

(
1↑ sBisAj

)r

↗ (1↑ sBsA)
r .

(38)

From the inequality above, we have:
E[sC ] ↘ 1↑ (1↑ sBsA)

r . (39)
The proof of Theorem 3.3 is finished.

D. Proof of LoRASculpt Sparsity Guarantee
We first demonstrate that incorporating Knowledge-Guided
Regularization impacts the sparsity structure of the low-
rank LoRA matrices. Specifically, each row of B maintains
uniform sparsity, though different rows have varied spar-
sity levels; similarly, each column of A has consistent spar-
sity within itself, while sparsity varies across columns. The
overall sparsity of the two low-rank matrices remains at sB
and sA following one-shot pruning. For the partial deriva-
tive of the (i, j)-th element of the delta weight BA, we have



the following expression:
ϑL2

CMR
ϑ(BA)ij

= 2 ·M2
ij ·

∑

k

BikAkj , (40)

This indicates that the penalty on the (i, j)-th position in
the delta weight BA affects the i-th row of B and the j-
th column of A . Consequently, B is constrained by rows,
and A by columns, resulting in varying sparsity across the
rows of B and the columns of A. Under this condition, the
following theorem holds:

Theorem D.1. Consider matrices A → Rr→q and B →
Rp→r, where each row of B and each column of A ex-
hibit uniform sparsity internally but vary across rows and
columns, respectively, with average sparsities sA and sB .
Then, the expected proportion E[sC ] of nonzero entries in
the product matrix C = BA satisfies:

E[sC ] ↘ 1↑ (1↑ sAsB)
r. (41)

Proof. See Appendix C. ↭
Despite the non-uniform sparsity of matrices B and A

across rows and columns, where different rows of B and
different columns of A exhibit varied distributions, we can
still assume the independence of updates across all ele-
ments. This does not hinder the application of McDiarmid’s
inequality, thereby allowing us to obtain the previously es-
tablished error bounds in Theorem 3.2. Thus, we have es-
tablished the sparsity guarantees of LoRASculpt.

E. Algorithm of LoRASculpt
The algorithm is outlined in Algorithm 1. Please refer to
Sec. 3.2 for more details.

F. Addition Evaluation Details
Details of Compared Baselines
(a) LoRA [ICLR’22] [17]: Introduces low-rank adapters to
efficiently fine-tune large models.
(b) DoRA [ICML’24] [39]: Enhances the learning capacity
and training stability of LoRA by decomposing weights into
magnitude and direction.
(c) Orth-Reg [ECCV’24] [18]: Adds an orthogonal regulariza-
tion with a hyperparameter (i.e., 1e-3) to LoRA weights, en-
couraging fine-tuned features to be orthogonal to pretrained
features to preserve model generalization. For fair compar-
ison and due to resource constraints, the component that in-
volves multiple LoRA modules is excluded.
(d) L2-Regularization [PNAS’17] [28]: Apply L2 regulariza-
tion with a hyperparameter (i.e., 1e-3) to the LoRA weights,
guiding the fine-tuned model closer to the pretrained model
thus reducing forgetting.
(e) DARE [ICML’24] [73]: Parameters from the fine-tuned
LoRA weights are randomly selected and re-scaled to miti-
gate knowledge conflict of the target task and other tasks.

Algorithm 1: LoRASculpt
Input: Training Steps T , Warmup Steps Twarmup, Training

data Dtr, Sparsity Ratio sA, sB , Number of Layer
in LLM and Connector LLLM, LCon, Option of
whether training Connector with LoRA FlagCon.

Output: Final LoRA weights.
LLLM

CMR → 0, LCon
CMR → 0 ;

S → ω(W ) =
∣∣∣1/ log

(
|W |

→W→2
+ ε

)∣∣∣ ; ϑ Eq. (6)
M → tanh(ϖ ↑ S) ; ϑ Eq. (7)
for t = 1, 2, . . . , T do

Sample a batch (xvision, xtext, y) in Dtr ;
if t ↓ Twarmup then

if t = Twarmup then
MA → Mask(A, sA) ;
MB → Mask(B, sB) ; ϑ Eq. (3)

end
A → MA ↑A ;
B → MB ↑B ; ϑ Eq. (2)

end
hvision = ϱCon ↔ ϱVis(x

vision), htext = Tokenize(xtext) ;
LTask → LCE

(
!
[
hvision, htext], y

)
;

for l = 1, 2, . . . , LLLM do
LLLM

CMR → LLLM
CMR + ↗Ml ↑ (BlAl)↗F ; ϑ Eq. (8)

end
if FlagCon = True then

for l̃ = 1, 2, . . . , LCon do
LCon

CMR → LCon
CMR + ↗Ml̃ ↑ (Bl̃Al̃)↗1 ;

ϑ Eq. (10)
end

end
L = LTask + ς · LLLM

CMR + φ · LCon
CMR ; ϑ Eq. (11)

Update low-rank adapters to minimize L ;
end
return Fine-tuned LoRA in ! (and ϱCon)

(f) Model Tailor [ICML’24] [84]: Retains pretrained param-
eters while selectively replacing a small portion (i.e., 10%)
of fine-tuned parameters, guided by salience and sensitivity
analysis.

Evaluation Metric.
To evaluate the performance of MLLMs in general and

specialized knowledge, we compute the source performance
(denotes by Source) and target performance (denotes by
Target):

Source =
1

|D|

|D|∑

i

Score(Di), Target = Score(T ). (42)

where Score(·) denotes the evaluation metric for different
datasets, which is set to Accuracy and CIDEr for VQA and
Captioning tasks, respectively. Here, D = {Di}|D|

i=1 repre-
sents the datasets used to evaluate general knowledge, and
T denotes the downstream task dataset. We use the average



score of Source and Target, denoted as Avg to measure the
overall capability of the MLLM.

G. Ablation Study of ω
ϖ controls the sparsity strength for MLLM connector in
Eq. (11). Since the connector plays a crucial role in modal-
ity alignment, adopting a high sparsity level could lead to
performance degradation on downstream tasks (denoted by
Target in Tab. I). Selecting an appropriate ϖ to sparsify the
connector can achieve a balance between Source and Target.

φ 10↑2 10↑3 10↑4 10↑5 10↑6

Source 60.19 58.58 59.73 59.55 59.13
Target 80.10 79.99 84.02 85.34 85.01

Avg 70.15 69.29 71.87 72.45 72.07

Table I. Ablation Study of φ, which represents the intensity of
sparsity applied to the MLLM connector. When set to 10↑5, the
optimal Avg is achieved.


	Introduction
	Related Works
	Methodology
	Preliminary
	Proposed Method
	Sparsifying LoRA for Redundancy Reduction
	Regularizing LoRA for Knowledge Harmonization
	Method Adaptation in MLLM Connector


	Experiments
	Experimental Setup
	Comparison to State-of-the-Arts
	Diagnostic Analysis
	Catastrophic Forgetting in MLLM Connector
	Ablation Study
	Empirical Validation of Proposed Theorem


	Conclusion
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem D.1
	Proof of LoRASculpt Sparsity Guarantee
	Algorithm of LoRASculpt
	Addition Evaluation Details
	Ablation Study of beta

