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A. Overview

In this supplementary material, we provide additional de-
tails, experimental analyses and extension applications to
support and expand upon the findings presented in the main
paper.

Specifically, We address several key aspects in our sup-
plementary materials: discussing similarities and key dif-
ferences with concurrent works and customized T2I mod-
els (Sec. B); Offering additional clarifications on our ap-
proach, including experimental configurations and supple-
mentary ablation analyses (Sec. C–Sec. D); Presenting ad-
ditional experiments to validate our method, including fur-
ther comparisons with state-of-the-art approaches (Sec. E);
Demonstrating extensions and applications of our method
by integrating it into different pre-trained models and ex-
ploring new applications (Sec. F).

B. Discussion with Related Works

In sampling-based methods, while concurrent work, LRDiff
[21] similarly enhances the generation of objects in specific
regions by injecting noise into targeted areas to provide cues
for the score estimation network, thereby guiding the de-
noising process toward generating a single visual concept
within a specified region. However, although they apply
distinct guidance to each object, the visibility order between
objects is not taken into account.

To address this issue, our method adopts a fundamen-
tally different approach: SDP synthesizes objects sequen-
tially, stage by stage, following the visual order from bot-
tom to top. It dynamically adjusts the guidance scale, al-
lowing the denoising network to focus on different objects
at each stage and ensuring the establishment of correct oc-
clusion relationships. Additionally, we propose a visibility
order-aware loss that optimizes the cross-attention maps to
address the issue of local shifts that may arise when using

†Joint corresponding authors.

SDP alone, thereby enhancing the accuracy of object posi-
tioning and occlusion relationships in the generated images.
Customized T2I models Unlike layout-guided T2I meth-
ods, customized T2I models aim to integrate specific in-
put objects into the generated images while preserving their
identity features. To support customized generation, they
accept specific object inputs to customize the identity of ob-
jects, as well as provide attribute and spatial control through
text prompts and masks.

Optimization-based methods [3, 6, 7, 11, 17, 23, 35] can
achieve high-fidelity identity preservation. However, they
are slow and may suffer from overfitting occasionally. In
contrast, encoder-based methods [5, 10, 13, 18, 26, 27, 30,
33, 36, 37, 39] enable zero-shot performance but may ei-
ther lose the identity of the object or produce trivial results
resembling copy-pasting.

When integrating input objects into specific regions of an
image, these methods focus on ensuring that the generated
objects match the identity of the inputs and the attributes
defined by the prompts. However, they do not consider the
visibility order between the integrated object and other ob-
jects within or near that region. This limitation hinders their
effectiveness in dealing with occlusion issues.

C. Experimental Settings

C.1. Implementation Details

We utilize Stable Diffusion 1.5 [22], trained on the LAION
dataset [24]. The coefficients for the VOA loss are set as
αo = 6, αvis = 4, and αbac = 2, with the optimization
coefficient α defaulted to 0.1. The initial guidance scale a
is set to 1.

All experiments are conducted on a single NVIDIA RTX
4090 GPU. Unless otherwise stated, we adopt the DDIM
sampler [25] with 50 sampling steps for the reverse diffu-
sion process, using a fixed classifier-free guidance scale of
7.5.
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Figure 1. Visual illustration of our VOBench.

C.2. Preprocess of the Attention Maps

To compute the loss between the attention map At,n and
each specific region, we first extract the cross-attention
maps associated with the object prompt cn from multiple
layers. After extracting these maps, we remove the attention
maps corresponding to the <sot> token, ensuring that only
relevant information is retained. Next, we apply a Softmax
operation to normalize the remaining attention maps, en-
hancing their interpretability. To further refine the attention
representation, we employ Gaussian smoothing following
the methodology outlined in [2]. This process ultimately
results in the attention map At,n at a resolution of 16× 16.

C.3. VOBench

As illustrated in Fig. 1, our VOBench comprises three com-
ponents: bounding boxes with visibility order, reference im-
ages, and text prompts. It includes 200 combinations con-
structed through the following process. All raw images in
VOBench are meticulously curated from the Internet. Ini-
tially, we employ GroundingDINO [14] and GPT-4V to
generate bounding boxes and corresponding text prompts
for each object in the images. Subsequently, these bounding
boxes and prompts are manually verified, and a visibility
order is assigned to each object. The benchmark is further
categorized into four groups, containing 2–5 objects per im-
age. For each category, 50 images are manually selected to
ensure diversity in occlusion relationships, prioritizing vari-
ations in the degree of overlap between bounding boxes.

D. Additional Ablation Studies

D.1. Smooth Guidance for Sequential Denoising
Process

Our SDP employs a smooth guidance mechanism, in addi-
tion to assigning strong guidance to the objects at the cur-
rent stage, we also apply low-intensity guidance to objects
not belonging to that stage (i.e., objects will be mainly han-
dled at other stages). This approach is based on the ob-
servation that object outlines are typically formed during
the early steps of the diffusion process, particularly before
T = 20 [4].

As shown in Fig. 2, we visualize the results of using
smooth guidance compared to applying guidance exclu-
sively to a single object at each stage. The second row illus-
trates the results when visual guidance is applied to only one
object at a time, while the first row shows the results when
smooth guidance is applied across different objects. It can
be observed that focusing exclusively on a single object n at
each stage may result in failures to generate other objects.
In contrast, the smooth guidance effectively addresses this
issue, enabling the successful synthesis of all objects.

D.2. Influence of Local Shifts
In the main paper, we discussed that while SDP can con-
strain target generation within a specified region through
visual guidance, consecutive convolution layers in the de-
noising model may introduce local shifts, potentially caus-
ing changes in object positions and inaccurate occlusion re-
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Figure 2. Focusing exclusively on a single object n at each denois-
ing stage can lead to the failure of generating other objects. Row 1
illustrates results with smooth guidance, while row 2 shows those
without it.
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Figure 3. Visual results of ablation study on VOA loss

lationships.
For instance, as shown in the first row of Fig. 4, the bear

shifts to the right within the image. Although the occlusion
relationships remain unchanged, the spatial positions of the
objects are adjusted. Additionally, when the visual guidance
for object n shifts away from object n + 1, as illustrated in
the second row (where the apple moves further from the
bag), both the spatial positions and occlusion relationships
may be altered.

To address this problem, we propose constraining spa-
tial positioning and occlusion relationships at the feature
level by introducing a visibility order-aware loss, which op-
timizes the cross-attention maps. As demonstrated in the
second and third columns of Fig. 4, our VOA loss effec-
tively addresses the issue of local shifts, significantly im-
proving the accuracy of occlusion relationship generation.

D.3. Coefficients of Visibility-Order-Aware (VOA)
Loss

We visualize the ablation study results of the VOA loss in
Fig. 3 and discuss them in the main paper. Additionally, we
evaluate the impact of the three coefficients in the VOA loss
on the final performance of our method using VOBench, as
shown in Table 1. Comparing the first and second rows,
increasing αvis places greater emphasis on the object visi-
bility loss, prompting the model to prioritize generating ob-
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Figure 4. Illustration of local shifts introduced by SDP constraints.

jects within the bounding boxes. While this can slightly
enhance image quality, it negatively affects the positional
accuracy and occlusion relationships of the generated ob-
jects. Comparing the first and third rows, increasing αbac

assigns more importance to the background loss, encourag-
ing the model to generate fewer objects outside the bound-
ing boxes. Finally, comparing the first and fourth rows, ex-
cessively increasing the weight of the occlusion term αo ad-
versely impacts both the quality and positional accuracy of
the generated objects, making it challenging to produce cor-
rect occlusion relationships.

Table 1. Quantitative comparison of different loss coefficients
combinations.

Coefficients combinations FID↓ CLIP-Score↑ LA↑ OA↑
αo = 6, αvis = 4, αbac = 2 10.03 29.73 55.11 82.50
αo = 6, αvis = 8, αbac = 2 9.89 29.67 46.35 75.50
αo = 6, αvis = 4, αbac = 4 16.12 29.62 49.13 75.00
αo = 12, αvis = 4, αbac = 2 13.62 29.65 48.13 78.50

D.4. Denoising Steps
Since our SDP divides the entire denoising process into
stages, increasing the number of objects reduces the steps
per stage, potentially affecting the quality of the generated
images. To address this, we evaluated the impact of in-
creasing sampling steps using a curated benchmark of 150
images (5–7 objects per image, with 50 images per cate-
gory) and calculated results for four metrics to determine
the optimal number of steps for generating images with a
higher object count. As shown in Table 2 and Fig. 5, when
T increases to 75 steps, although FID shows a slight de-
cline, the LA metric improves from 40.08 to 43.25, reflect-
ing more precise layout constraints during object genera-
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Figure 5. Visual results of ablation study on time step T .

tion. Notably, OA steadily increases from 27.00 to 39.50, as
illustrated by the comparison between the second and third
columns in Fig. 5, indicating enhanced handling of occlu-
sion relationships. Similarly, the Clip-Score shows a slight
improvement, suggesting better alignment with the textual
prompt. However, when T > 75, all metrics decline, result-
ing in suboptimal performance, as shown by the comparison
between the third and fourth columns in Fig. 5.

However, as the number of objects continues to increase,
our method begins to face challenges. We hypothesize that
a primary reason lies in the increased complexity of the op-
timization process, which necessitates the simultaneous op-
timization of a greater number of attention maps.

Table 2. Test on 4 metrics of increasing denoising steps T when
generating images with high number of objects.

T FID ↓ Clip-Score ↑ LA ↑ OA ↑
50 23.35 28.91 40.08 27.00
60 22.52 29.03 42.91 32.50
70 23.18 29.17 42.97 38.50
75 23.26 29.19 43.25 39.50
80 23.41 29.05 43.17 39.00
90 24.68 28.92 39.84 37.50
100 26.34 28.67 38.17 34.50

D.5. Guidance Scale
In SDP, the choice of the guidance scale is a crucial fac-
tor influencing the quality of generated results. To opti-
mize our method’s performance, as shown in Table 3 and
Fig. 6, we tested different initial values on our VOBench
and found that selecting a/2 as the initial value yields the
best performance across various metrics and image gener-
ation quality. If the guidance scale value is too low (e.g.,
a0 = 0 in column 2), the sampling process during each
object’s phase focuses more on the object itself, neglecting
other objects. Conversely, if the guidance scale is too high
(e.g., a0 = 0.8a in column 7), it interferes with the sam-

pling direction of the current object, reducing the accuracy
of the object’s generated position.

Table 3. Quantitative comparison of different initial guidance scale
values

Guidance Scale FID↓ CLIP-Score↑ LA↑ OA↑
a0 = 0 16.89 29.66 42.28 74.50
a0 = 0.2a 10.51 29.65 42.35 76.50
a0 = 0.4a 10.29 29.68 44.13 73.00
a0 = 0.5a 10.03 29.73 55.11 82.50
a0 = 0.6a 11.09 29.70 45.35 76.50
a0 = 0.8a 13.39 29.71 43.35 73.50

We compared the quality of the results generated for dif-
ferent numbers of objects using various guidance scale val-
ues. It can be observed from Table 4 that as the number
of objects increases, the initial guidance value has a greater
impact on the correctness of the visual order of the gen-
erated objects. When the guidance scale is set to a/2, it
performs better than other settings for 3–5 objects. Thus,
we set the guidance scale to a/2 by default.

Table 4. Quantitative comparison of different initial guidance scale
values for different numbers of objects

Guidance Scale OA (2 objects)↑ OA (3 objects)↑ OA (4 objects)↑ OA (5 objects)↑

a0 = 0 90.00 74.00 68.00 66.00
a0 = 0.2a 88.00 82.00 72.00 68.00
a0 = 0.4a 90.50 86.00 74.00 68.50
a0 = 0.5a 90.00 88.00 78.00 74.00
a0 = 0.6a 88.00 82.00 70.00 66.00
a0 = 0.8a 86.00 78.00 68.00 64.00

E. Comparison to SOTAs
E.1. Inference Time
The core of our SDP process is to divide the original sam-
pling steps into distinct stages for different objects, allowing
the application of tailored noise guidance. This approach
enables us to achieve superior results in object occlusion
compared to existing methods, without increasing the sam-
pling steps per object. As shown in Table 5, we evaluated
the inference time of various training-free methods by cal-
culating the average inference time per image on VOBench.
Our method is competitive in inference time, with a sam-
pling speed second only to DenseDiffusion[8]. This is be-
cause DenseDiffusion does not perform iterative optimiza-
tion of zt based on the attention map. Nevertheless, our
method significantly outperforms others in handling occlu-
sion relationships between objects.

E.2. Comparisons on COCO-based benchmark
To further demonstrate the effectiveness of our method, we
constructed a COCO-based benchmark by selecting a sub-
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Figure 6. Evaluation on different initial guidance scale.

Table 5. Comparison of the inference time of our method with other training-free methods on one RTX4090 GPU.

Method BoxDiff[32] R&B[31] AR.[19] MultiDiff.[1] DenseDiff.[8] RPG-Diffusion[34] FreeControl[16] Ours

Inference Time (s) 37.09 38.52 52.91 35.44 28.72 48.39 47.02 35.41

set of images from the COCO dataset. The creation pro-
cess is as follows: we first analyze the number of entities in
the text prompts from the annotations of the COCO dataset.
Next, we employ GroundingDINO [14] to detect the bound-
ing box corresponding to each entity. To ensure that each
image contains complex occlusion relationships, we calcu-
late the number of overlapping bounding boxes and the size
of their overlapping areas. Finally, we randomly select 25
images from each category, classified by the number of ob-
jects (ranging from 2 to 5), with varying degrees and sizes
of occlusions, resulting in a benchmark comprising 100 im-
ages.

We conduct extensive comparisons on this dataset and
present the results in Table 6. Our method demonstrates su-
perior performance on the COCO-based benchmark, partic-
ularly in handling overlapping objects. While our FID score
of 8.43 is slightly higher than the training-based method
MIGC (8.23), we achieve the highest scores in both loca-
tion accuracy (LA) and occlusion accuracy (OA), with LA
at 65.83 and OA at 86.50. This indicates that our method
excels in accurately positioning objects and modeling their
occlusion relationships, even without training on large-scale
datasets. Furthermore, our method outperforms all others in
the User Study metrics, achieving the best average rankings
in quality (AR-Q: 1.96), layout accuracy (AR-L: 1.67), and
occlusion handling (AR-O: 1.54). These results underscore
the effectiveness of our approach in generating high-quality
images that adhere to provided layouts and accurately rep-
resent complex occlusions among objects.

E.3. Visual Comparisons with Other Methods

In the main paper, we compared our method with six state-
of-the-art (SOTA) methods. Here, we extend the compar-
ison to include six additional SOTA methods. As shown
in Fig. 7, our method demonstrates superior spatial consis-
tency and occlusion handling. For instance, in the second
row, methods (b–f) fail to correctly handle the visibility or-
der of objects, while in the third row, methods (b–g) exhibit
positional shifts of objects.

In addition, in scenarios where different visibility orders
apply to different parts of an object’s area, our method can
also handle these cases well. We compared our approach
with existing methods on two representative cases, as shown
in Fig. 8. In the first case, depicted in the top row, our
method successfully avoids missing objects and generates
an image with the correct occlusion relationship between
the woman and the phone, outperforming other methods .
In the second case, shown in the bottom row, some methods
fail to preserve the connection between the umbrella handle
and the hand (columns d and e). In contrast, our method
accurately captures the occlusion relationships between dif-
ferent parts of the person and the umbrella, ensuring correct
positioning and occlusion across all objects.

Note that all methods compared here adopted the Stable Diffusion 1.5
as the foundation model.



Table 6. Evaluation results of various methods on the COCO-based benchmark. The best and second-best performances are marked in
bold and underlined, respectively.

Metrics
Training-based Training-free

SmartCtrl [15] ControlNet [38] MIGC [40] InstanceDiffusion [29] AnyControl [28] BoxDiff [32] R&B [31] AR [19] MultiDiffusion [1] DenseDiffusion [8] FreeCtrl [16] RPG-Diffusion [34] Ours

FID ↓ 10.33 9.72 8.23 8.51 9.01 21.99 14.17 17.59 18.42 16.68 15.19 10.12 8.43
CLIP-Score ↑ 29.72 29.82 29.89 29.93 29.87 29.51 28.66 29.21 28.51 29.45 29.44 29.51 29.95
LA ↑ 62.85 59.73 65.62 63.58 64.37 16.21 27.88 23.57 22.72 32.49 36.39 48.37 65.83
OA ↑ 60.50 61.50 75.50 75.00 77.50 22.50 27.50 31.50 26.50 23.50 26.50 54.50 86.50
AR-Q ↓ 7.17 5.88 5.06 3.93 3.91 10.18 8.81 8.47 9.04 12.19 10.97 3.44 1.96
AR-L ↓ 3.98 5.07 2.30 3.61 3.76 12.18 11.40 10.01 10.58 9.89 9.75 6.81 1.67
AR-O ↓ 4.44 5.49 3.88 3.28 2.72 12.84 9.83 12.18 7.63 10.62 10.00 6.55 1.54
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Figure 7. Comparison with other six SOTA methods

F. More Results of Our VODiff

To further validate the effectiveness of our method, as
shown in Fig. 11, we first present more results generated

using our approach on SD1.5 [22]. These results demon-
strate that our method achieves high-quality image genera-
tion, precise spatial control, and effectively handles occlu-
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Figure 8. Results of cases with different visual orders for different parts of the area of the object.



sion relationships between objects. Furthermore, to illus-
trate the generalizability of our method, we integrate it into
SDXL [20], an upgraded version of Stable Diffusion known
for producing higher-quality images and offering a more ac-
curate understanding of prompts. Visual results in Fig. 12
show that leveraging the enhanced pretrained model signifi-
cantly improves the quality of the generated images, as well
as the accuracy of spatial positioning and occlusion rela-
tionships. We also combine it with Flux.1 (dev)[9], with
results shown below, further validating VODiff’s general-
ization.

Table 7. Comparison of our method integrated with different fun-
damental models.

Model Name FID ↓ Clip-Score ↑ LA ↑ OA ↑
Our method + SD1.5 10.03 29.73 55.11 82.50
Our method + SDXL 8.71 29.91 57.12 85.00
Our method + Flux.1(dev) 8.03 30.18 58.23 88.50
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Figure 9. Visual Comparison of our method integrated with Flux.1
(dev)[9].

F.1. Enhancement of Existing Methods Using Our
VODiff

Since our VODiff require no training and can be seam-
lessly integrated into many existing diffusion-based models
[12, 29, 38, 40], we conducted experiments to demonstrate
that our approach significantly improves the accuracy of oc-
clusion relationship generation in current pretrained mod-
els. As shown in Table 8, we compare the performance
of four different methods (GLIGEN [12], ControlNet [38],
MIGC [40], and InstanceDiffusion [29]) on VOBench, both
with and without the integration of VODiff . Across all mod-
els, integrating VODiff leads to substantial improvements in
FID scores (indicating better image quality) and enhances
the accuracy of positional and occlusion relationships, as
reflected by increases in LA and OA. For instance, in the
case of MIGC, the FID score improves from 9.82 to 7.74,
while LA and OA rise from 54.62 to 63.75 and from 65.00

to 90.50, respectively.
As shown in Fig. 10, Each case is represented by two

rows: the results before and after applying our method, re-
spectively. Our VODiff help these training-based methods
address issues such as object disappearance and incorrect
positional and occlusion relationships. This demonstrates
that incorporating VODiff consistently enhances both the
quality of the generated images and the precision of their
spatial and occlusion relationships.

Table 8. Our VODiff can be integrated into various pre-trained
models, enhancing the performance of existing methods across
four metrics.

Method SDP&VOA FID↓ CLIP-Score↑ LA↑ OA↑

GLIGEN[12] × 11.27 29.09 54.85 55.50
✓ 8.81 29.91 57.52 86.00

ControlNet[38] × 18.91 29.34 52.73 51.50
✓ 9.03 29.97 60.21 86.50

MIGC[40] × 9.82 29.61 54.62 65.00
✓ 7.74 30.12 63.75 90.50

InstanceDiff.[29] × 10.21 29.53 53.58 63.50
✓ 9.61 29.98 62.44 88.50

F.2. More Applications of Our Method
Object insertion. Our SDP method can be combined with
Inversion [25] to enable object insertion, ensuring that the
inserted objects adhere to the preset visibility order relative
to the original objects in the image, while preserving the
background unchanged. First, we extract the masks of the
objects of the original image. Then, following the region
separation approach described in the main paper, we com-
pute the masks for the regions of the new objects (M visible

i ,
M overlap

i , M background
i ). Subsequently, our SDP applies visual

guidance to denoise the objects stage by stage according to
a user-defined visual sequence.

Unlike directly generating an image from a layout, object
insertion requires preserving the content of existing objects
in the original image, with changes limited to the newly in-
serted objects. During the stages corresponding to exist-
ing objects, the noise representations of these objects and
the background regions are constrained to align with the
noise representation of the original image, obtained through
DDIM inversion [25]. For regions corresponding to the new
objects (M visible

i ), weaker visual guidance is applied ini-
tially. In the stages for the newly inserted objects, stronger
visual guidance is applied. Simultaneously, the VOA loss
is utilized to optimize the cross-attention map for the newly
added objects, further enhancing the accuracy of generated
occlusion relationships and object positioning. Finally, dur-
ing the global denoising phase, consistency between the
background and other object regions with the original im-
age is enforced to ensure seamless integration of the newly
inserted objects.

As shown in Fig. 13, we demonstrate the application of



our method for inserting newly generated objects into an ex-
isting image. In the first row of the figure, we showcase the
insertion of new objects either in front of or behind existing
objects in the original image. The second and third rows il-
lustrate the insertion of multiple objects into the background
while adhering to the user-specified visibility order among
the objects. The inserted objects respect the predefined vis-
ibility order relative to the original objects in the image,
while the background remains unchanged.
Exemplar based image editing. Similar to other exemplar-
based image editing methods [5, 27, 33], our approach
integrates user-specified objects into the generated im-
age while preserving their identities and background un-
changed. However, our method uniquely enables control
over the visual order of these objects, as demonstrated in
Fig. 14.

To achieve identity preservation, we utilize Dream-
Booth [23] to learn the concepts of the objects in the in-
put image, representing them as multiple text tokens. These
learned text tokens, along with their corresponding bound-
ing boxes, are used as input prompts for our VODiff , allow-
ing the generated objects to not only preserve the identities
of the input objects but also ensure that their positions and
visibility order align with the preset arrangement.
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Figure 11. More Results of our method using SD 1.5
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Figure 12. More Results of our method using SDXL.
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Figure 13. Object insertion with correct visibility orders.
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Figure 14. Exempler based image editing with accurate visibility orders.



References
[1] Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel.

Multidiffusion: fusing diffusion paths for controlled image
generation. In ICML, pages 1737–1752, 2023.

[2] Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and
Daniel Cohen-Or. Attend-and-excite: Attention-based se-
mantic guidance for text-to-image diffusion models. ACM
TOG, 42(4):1–10, 2023.

[3] Hong Chen, Yipeng Zhang, Xin Wang, Xuguang Duan,
Yuwei Zhou, and Wenwu Zhu. Disenbooth: Disentangled
parameter-efficient tuning for subject-driven text-to-image
generation. arXiv:2305.03374, 3, 2023.

[4] Minghao Chen, Iro Laina, and Andrea Vedaldi. Training-
free layout control with cross-attention guidance. In WACV,
pages 5343–5353, 2024.

[5] Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao,
and Hengshuang Zhao. Anydoor: Zero-shot object-level im-
age customization. In CVPR, pages 6593–6602, 2024.

[6] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik,
Amit H Bermano, Gal Chechik, and Daniel Cohen-Or. An
image is worth one word: Personalizing text-to-image gen-
eration using textual inversion. arXiv:2208.01618, 2022.

[7] Yuming Jiang, Nanxuan Zhao, Qing Liu, Krishna Ku-
mar Singh, Shuai Yang, Chen Change Loy, and Ziwei
Liu. Groupdiff: Diffusion-based group portrait editing.
arXiv:2409.14379, 2024.

[8] Yunji Kim, Jiyoung Lee, Jin-Hwa Kim, Jung-Woo Ha, and
Jun-Yan Zhu. Dense text-to-image generation with attention
modulation. In ICCV, pages 7701–7711, 2023.

[9] Black Forest Labs. FLUX.1 [dev], 2024.
[10] Leheng Li, Weichao Qiu, Xu Yan, Jing He, Kaiqiang Zhou,

Yingjie Cai, Qing Lian, Bingbing Liu, and Ying-Cong Chen.
Omnibooth: Learning latent control for image synthesis with
multi-modal instruction. arXiv:2410.04932, 2024.

[11] Tianle Li, Max Ku, Cong Wei, and Wenhu Chen. Dreamedit:
Subject-driven image editing. arXiv:2306.12624, 2023.

[12] Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jian-
wei Yang, Jianfeng Gao, Chunyuan Li, and Yong Jae Lee.
Gligen: Open-set grounded text-to-image generation. In
CVPR, pages 22511–22521, 2023.

[13] Chang Liu, Xiangtai Li, and Henghui Ding. Referring image
editing: Object-level image editing via referring expressions.
In CVPR, pages 13128–13138, 2024.

[14] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang
Su, Jun Zhu, et al. Grounding dino: Marrying dino
with grounded pre-training for open-set object detection.
arXiv:2303.05499, 2023.

[15] Xiaoyu Liu, Yuxiang Wei, Ming Liu, Xianhui Lin, Peiran
Ren, Xuansong Xie, and Wangmeng Zuo. Smartcontrol:
Enhancing controlnet for handling rough visual conditions.
arXiv:2404.06451, 2024.

[16] Sicheng Mo, Fangzhou Mu, Kuan Heng Lin, Yanli Liu,
Bochen Guan, Yin Li, and Bolei Zhou. Freecontrol:
Training-free spatial control of any text-to-image diffusion
model with any condition. In CVPR, pages 7465–7475,
2024.

[17] Lingzhi Pan, Tong Zhang, Bingyuan Chen, Qi Zhou, Wei
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