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Table A1. Mathematical notation used in the paper.

Expression Specification Explanation

Commonly Used
x x → R

T→H→W→3 source video clip
s – stride in sampling clip x from source video
z z → R

t→h→w→c video latent embedded from x

E – encoder from 3D-VAE
rs rs =

H

h
= W

w
spatial compression rate

rt rt =
T

t
temporal compression rate

p p → R
T→H→W→6 Plücker embedding of cameras of video clip x

Diffusion Related
ω – diffusion time step
ε ε → R

t→h→w→c random noise such that ε ↑ N (0, I)
zω zω → R

t→h→w→c noisy video latent
Dε – diffusion model parameterized by ϑ

y – conditional signal, usually textual embedding
ov ov → R

Nv→dv visual tokens as a sequence in the diffusion model
octrl, olora octrl, olora → R

Nv→dv camera tokens as a sequence in the diffusion model
N – number of transformer blocks in the ControlNet branch

Reconstruction Related
pl – spatial patch size applied to z in the LaLRM
ol ol → R

Nl→dl visual latent tokens as a sequence in the LaLRM
Nl Nl = t · h

pl
· w

pl
number of visual latent tokens in the LaLRM

op op → R
Nl→dl camera tokens as a sequence in the LaLRM

V – number of supervision views in the LaLRM
G G → R

(T→H→W )→12 Gaussian feature map in the LaLRM



A. Implementation Details

Table A1 provides a list of the mathematical notation used
in the paper.
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Figure A1. Architecture of the Latent Large Reconstruction

Model (LaLRM). Given a video latent z and the the Plücker em-
bedding of cameras, the LaLRM directly regresses the 3DGS of
the scenes in a feed-forward manner.

A.1. Additional Architectural Details

Our framework comprises a Camera-Guided Video Dif-
fusion Model and a Latent Large Reconstruction Model
(LaLRM) capable of generating 3D scenes conditioned on
single images. Our architectural designs effectively align
the generation and reconstruction tasks, bridging the image
space and 3D space through the video latent space.

Figure A1 illustrates the architectural details of the
LaLRM. Given video latents that can be generated by the
video diffusion model (during inference time) or can be
embedded from source video clips (during training time),
a lightweight tokenization module projects these latents to
visual tokens. Patchification is performed on the video la-
tent along the spatial dimensions with a mild patch size pl

to obtain ol → R
Nl→dl , where Nl = t · h

pl
· w

pl
. For the

Plücker embedding, we 3D-patchify along spatiotemporal
dimensions with 3DConv. We purposefully set the spatial
patch size to pl · rs and the temporal patch size to rt (de-
fined in Section 3.1 of the paper), producing pose tokens
op that match the length with ol. The two sets of tokens
are merged with channel-wise concatenation and fed into a
sequence of transformer blocks to regress the 3D Gaussian
features. We fulfill pixel-level correspondence between the
Gaussians and source video x in the RGB space via the la-
tent decoding module, which involves a 3D-DeConv layer
with upsampling strides (rt, pl·rs, pl·rs) and the 12-channel
output is the Gaussian feature map G → R

(T ·H·W )→12.
Figure A2 illustrates the architectural details of integrat-

ing camera embeddings into the pre-trained video diffusion
transformer during the training stage, with a ControlNet-
branch and a LoRA-branch. Each branch involves a
lightweight camera encoder composed of convolutional lay-
ers and zero-linear layers. The camera encoders project the
camera embedding into camera tokens of the same dimen-
sion as the visual tokens. The visual tokens and camera
tokens are concatenated or element-wise added before they
are fed into the main branch and the ControlNet branch. The
visual-camera tokens are further processed by a sequence
of transformer blocks and mapped to the same dimension
of the added noise by the unpatchify module. Note that for
simplicity in Figure A2, we have omitted the text tokens,
diffusion time embeddings, and positional embeddings.

A.2. Training and Evaluation Details

The camera-guided video diffusion model uses a trans-
former-based video diffusion model; namely, CogVideoX-
5B-I2V [106] that generates 49 frames of 480 ↓ 720 pixel
resolution.2 An encoder from 3DVAE compresses video
clips with ratios of rt = 4 and rs = 8, yielding latents of di-
mensionality 13↓60↓90. To build the ControlNet branch,
we use the first N = 21 base transformer blocks from the
video backbone to initialize the weights. The camera-LoRA
has a low rank of dimension 256. The model is trained
with a batch size of 24 for 40K steps, using the Adam op-
timizer [22] with a learning rate of 2 ↓ 10↑5, ϖ1 = 0.9,
ϖ2 = 0.95, and weight decay 1 ↓ 10↑4. During the eval-
uation, we randomly sampled 300, 300, and 100 video
clips from the RE10K test set, DL3DV-140, and Tanks-and-
Temples, respectively. For each video clip, we sampled a

2The references cited in this document are listed in the main paper.
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Figure A2. Architecture of Dual-branch Camera-guided Video Diffusion Model. We show the skeletons of the training pipeline, where
random noise is added to the video latents. The conditional image is merged to the noisy latents via feature concatenation. The camera
guidance is integrated with LoRA-branch (left) and ControlNet-branch (right). We ignore the text tokens, the diffusion time embeddings,
the positional embeddings, and some reshaping operations for simplicity in the figure. In the foundation diffusion transformer, the text
tokens are concatenated along number-of-token dimension with visual tokens. Thus we apply zero-padding to camera tokens to guarantee
the same length before concatenation or element-wise sum. By default, we use SiLu as our activation function.



starting frame as the image condition and the subsequent n
camera poses as pose conditions, where n is determined by
the length of the generated video. Since different datasets
have diverse FPS, we sampled n poses at different strides
s (s = 3 for RE10K, s = 1 for DL3DV-140, and s = 4
for Tanks-and-Temples) to ensure smooth and noticeable
view transitions. Compared with the baselines, our method
generates the longest videos, so the baselines perform in-
ference using the front subset of our sampled poses. The
generated videos are COLMAPed to obtain camera poses,
followed by conversion of the camera system to be relative
to the first frame and normalization of all cameras to a com-
mon scale [4, 31]. We use translation and rotation error
to measure camera-guidance precision [2, 4, 31, 101]. For
a fair comparison, we measure the mean errors across the
first 16 frames for each method; i.e., VD3D [4] (16-frame),
ViewCrafter [111] (25-frame), and Ours (49-frame). SVD-
based [6] MotionCtrl [95] generates 14-frame videos, and
all frames are used. Visual similarity is assessed by calcu-
lating PSNR, SSIM [94], and LPIPS [115] between the gen-
erated images and ground-truth views. Similarly, for a fair
comparison, the first 14 frames in the generated videos are
evaluated. An important issue is that generated videos tend
to deviate from the conditional view and present diverse ap-
pearances as the scene progresses. It is therefore less reli-
able to evaluate quality using similarity metrics that mea-
sure the differences between generated frames and ground-
truth views.

For the latent large reconstruction model, we use a patch
size pl = 2 for the visual latent, and use a temporal patch
size of 4 and a spatial patch size of 16 for the camera
Plücker embedding. We follow reference [113] and use
the same architecture for the transformer blocks. We use
24 base transformer blocks with a hidden dimension of
1,024. The latent decoding module has a 3D-DeConv layer
with upsampling strides (4, 16, 16). The backbone trans-
former network is efficiently implemented with FlashAt-
tentionV2 [21] and optimized with mixed precision train-
ing [67] using the BF16 datatype.

We first train the model with low-resolution video clips
of dimensionality 49 ↓ 240 ↓ 360 and their corresponding
latents of dimensionality 13↓ 30↓ 45. Then, we fine-tune
the model with high-resolution 49↓480↓720 dimensional
video clips and corresponding 13↓60↓90 dimensional la-
tents. At this stage, due to memory constraints, we modify
the 3D-DeConv layer in the latent decoding module with
upsampling strides (4, 8, 8). Even with a smaller upsam-
pling rate, for each 3D scene, our Gaussian prediction yields
an enormous quantity of Gaussians to construct each scene;
i.e., T ↓ H

2 ↓ W

2 (4,233,600). A total of V = 48 supervi-
sion views are used, for which we randomly select V ↓ = 24
frames from each sampled video clip as seen views, and an
additional 24 frames disjoint from the video clip as unseen

views. The model is trained on low-resolution and high-
resolution datasets for 200K and 100K iterations, respec-
tively, using a cosine annealing schedule at a peak learning
rate of 4 ↓ 10↑4 and 1 ↓ 10↑5. We use a batch size of 24
with the Adam optimizer with ϖ1 = 0.9, ϖ2 = 0.95, and
weight decay 1 ↓ 10↑4. In the evaluation stage, following
the video generation stage, we sample starting frames and
poses with different strides in multiple benchmark datasets
for video generation. The generated video latents are lever-
aged to reconstruct 3D scenes from which images are ren-
dered for evaluation. At this stage, we assess performance
exclusively using similarity-based metrics. Consistent with
the video generation evaluation, we measure these metrics
on the frames rendered from the first 14 camera poses.

B. Additional Analysis of Controllable Video

Generation

This section presents further ablation analysis of our
camera-conditioned video generation pipeline.

B.1. Effect of LoRA on Static Scene Generation and

Camera Controllability

We employ LoRA fine-tuning in the main branch of our
camera-guided video generation model. LoRA is advan-
tageous for its compatibility with pre-trained models, as it
introduces extensions without altering the original model
weights. The lightweight module offers a cost-effective
approach to fine-tuning heavy models, requiring minimal
computational resources and reducing the risk of overfitting
to customized datasets. Our framework takes advantage of
LoRA to enhance static scene generation and camera con-
trollability.

To evaluate the impact on static scene generation, we
fine-tuned the I2V source model using LoRA on cus-
tomized datasets dominated by static scenes, including
RealEstate10K (RE10K), ACID, and DL3DV. In this sce-
nario, no pose control was applied. We compared the per-
formance of the fine-tuned model against the source model
on 20 in-the-wild image prompts (along with text descrip-
tions). The results show that the fine-tuned model gener-
ates significantly more varied static scenes compared to the
source model, especially for cases with humans and ani-
mals. The visualizations in Figure A3 illustrate that LoRA
enables the generation of more varied static scenes without
compromising visual quality.

To assess the role of LoRA in enhancing camera con-
trollability, we trained our full model without incorporating
LoRA modules. For these scenarios, in the main branch, the
camera embeddings are fed into the network in a channel-
concatenation manner without LoRA tuning in the main
backbone. Only the LoRA-camera encoder and linear pro-
cessing layers at the top are learned. Following the ex-



Figure A3. Comparison of video generations between the source model (top row) and the model fine-tuned on static-scene datasets with
LoRA modules (bottom row). The results demonstrate that fine-tuning the model on static-scene datasets equipped with LoRA produces
significantly more static scenes.

Table A2. Analysis of architectural designs in camera-guided

video generation model. We report the performance for visual
quality (FID and FVD) and pose control precision (Rerr and Terr)
from models trained on the RealEstate10K dataset. The first part
of the table is adopted from Table 1 in the paper.

Architecture Metrics

FID ↔ FVD ↔ Rerr ↔ Terr ↔
Lora-branch 19.02 212.74 0.102 0.157
Ctrl-branch 18.75 205.45 0.058 0.104
Dual-branch 17.22 183.54 0.052 0.095

Dual w/o LoraModule 17.84 195.07 0.062 0.101

Ctrl-branch only
w/o weight copy 18.92 206.75 0.065 0.108
block-1 19.90 214.66 0.114 0.162
blocks-10 19.15 210.74 0.075 0.126
blocks-30 20.15 221.61 0.056 0.105

perimental setup outlined in Section 4.3 of the paper, we
evaluated the models on 100 video clips sampled from
RealEstate10K. As shown in the middle part of Table A2,
comparing the “Dual w/o LoraModule” and “Dual-branch”
configurations reveals that LoRA plays a critical role in
fine-tuning the main branch. Excluding LoRA results in
a noticeable performance drop in both visual quality and
camera-guidance precision.

B.2. Analysis of the ControlNet-Branch Design

In our full model, the ControlNet branch is designed by
utilizing a trainable copy of the first 21 base transformer
blocks of the foundational video model, which consists
of 42 blocks in total. We extensively evaluated the de-
sign by using the ControlNet branch only. Specifically, we
trained the model with ControlNet conditioning under vari-
ous configurations, including using the first 21 blocks with-
out weight copying, denoted w/o weight copy, and using
the first 1, 10, or 30 blocks with weight copying, denoted

block-1, blocks-10, and blocks-30, respectively. As shown
in the third part of Table A2, comparisons among the differ-
ent architectural variants and the“Ctrl-branch” reveal that
weight copying substantially improves all metrics, particu-
larly visual quality. Using only one block results in weak
camera controllability, whereas increasing the number of
blocks strengthens the ability of the model to guide camera
poses. Notably, using 21 blocks (“Ctrl-branch”) achieves
similar levels of pose controllability as using 30 blocks,
while maintaining high visual quality. Based on these ob-
servations, we selected the trainable copy of the first 21 base
transformer blocks, as it provides an optimal balance be-
tween pose controllability and computational efficiency.

C. Additional Analysis of 3D Reconstruction

This section provides further analysis underlying our design
choices related to the large-scale 3D reconstruction model.

C.1. Fine-Tuning With the In-the-Wild Dataset

In deploying the LaLRM, we adopt a progressive training
strategy. During the second stage, we fine-tune the model
by involving a self-generated in-the-wild dataset. To as-
sess the impact of this dataset, we further fine-tuned a sep-
arate reconstruction model, LaLRM–, which excludes the
in-the-wild dataset. We quantitatively compared the per-
formances of LaLRM– and LaLRM on benchmark datasets
and qualitatively evaluated them on 20 disjoint in-the-wild
image prompts. The results reported in Table A3 indicate
that incorporating the in-the-wild dataset during fine-tuning

Table A3. Analysis on involving in-the-wild dataset to fine-

tune LaLRM. We report the performance on various benchmark
datasets for novel view synthesis of 3D scenes, which are built
from single view condition.

Method RealEstate10K DL3DV Tanks-and-Temples

Metrics LPIPS ↔ PSNR ↗ SSIM ↗ LPIPS ↔ PSNR ↗ SSIM ↗ LPIPS ↔ PSNR ↗ SSIM ↗
LaLRM– 0.295 17.06 0.538 0.343 16.62 0.570 0.359 15.85 0.502
LaLRM 0.292 17.15 0.550 0.325 16.64 0.574 0.344 15.90 0.510



Figure A4. Comparison of 3D rendering performance between latent reconstruction models fine-tuned without in-the-wild dataset (upper
row) and with in-the-wild dataset (lower row). Involving in-the-wild datasets during fine-tuning improves the generalization capability.

enhances the generalization capabilities of our model. Fur-
thermore, as shown in Figure A4, LaLRM demonstrates
noticeably better rendering quality compared to LaLRM–.
This further validates the benefits of using in-the-wild data
in the fine-tuning process.

D. Additional Discussion and Comparison of

Related Work

This section provides a detailed discussion of our work rel-
ative to prior research in the use of generative priors for 3D
rendering.

Significant advancements have been achieved in static
and kinetic 3D object generation from text or single im-
age prompts with notable improvements in quality and effi-
ciency [1, 3, 10, 18, 27, 30, 34, 44, 52, 55, 63, 73, 79, 90,
93, 99, 100, 102, 105]. However, progress in 3D scene gen-
eration has lagged behind [16, 25, 64, 80, 86, 91, 108, 109,
111, 116]. Most approaches to 3D scene generation follow
a two-stage process: First, novel views are generated from
a single image and, second, these views are used to train a
3D representation with a per-scene optimization strategy.

Early methods, such as LucidDreamer [20] and Realm-
Dreamer [80], explored scene-level 3D generation condi-
tioned on text descriptions or single images. They relied
on the 3D priors from incomplete point clouds constructed
via depth prediction from single images. Then, they com-
bined depth-based warping with diffusion-based image in-
painting to complete the scenes in an autoregressive man-
ner. These methods often struggle with inconsistencies in
occluded regions, as the per-view inpainting process can in-
troduce severe artifacts and discontinuities, particularly in
unseen areas. WonderJourney [109], which targets wide-
scene generation, also employs image inpainting diffusion
models to fill unseen regions rendered from limited point
clouds. However, as shown in our main comparisons, this
method similarly suffers from 3D incoherence in occluded
areas. Also, all these works do not have automatic and ex-
plicit control over camera poses during the generation pro-

cess.
Other efforts, such as Cat3D [25] and ReconFusion [96],

address multi-view consistency by incorporating camera
conditioning into image diffusion models. Nonetheless, a
noticeable issue is the tendency to produce blurry or dis-
torted background regions, particularly when conditioned
on a single image. This arises from the use of image diffu-
sion models to obtain dense views auto-regressively, which
are then used for 3D reconstruction via per-scene optimiza-
tion [48]. Image diffusion models lack built-in mechanisms
to guarantee cross-view consistency and such a multiple-
shot generation strategy often introduces inconsistencies,
especially for wide-view scenarios.

More recent efforts, such as ReconX [59] and
ViewCrafter [111], leverage video diffusion models and
global point clouds to enhance multi-view consistency.
However, as demonstrated in our main comparisons, these
methods are sensitive to the initialization of point clouds
and are restricted to generating narrow-scope scene repre-
sentations. Additionally, they lack explicit pose control dur-
ing the generation process.

Importantly, all previous methods depend on time-
consuming per-scene optimization such as NeRF [68] or
3DGS [47]. By contrast, our approach integrates explicit
camera control into a video diffusion model to enable pre-
cise and expansive scene generation. Our large-scale 3D re-
construction model is capable of efficiently constructing 3D
scenes from video latents. Its design effectively aligns the
generation and reconstruction tasks and bridges the image
space and 3D space through the video latent space, elimi-
nating the need for time-consuming per-scene optimization.

Comparison of Mip-NeRF: We next compare our
method with Cat3D [25] on more complex scenes from
Mip-NeRF [5]. Due to the lack of open-source code for
Cat3D, we retrieved the demonstration results directly from
the source webpage of reference [25]. The images in Fig-
ure A5 were rendered from 3DGS representations gener-
ated with orbital camera trajectories. For each scene, we
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Figure A5. Comparison of ZeroNVS and Cat3D on the Mip-

Nerf dataset in 3D scene generation from single input images.
For each scene, the conditional image is shown in the left column
along with renderings from two viewpoints, one at the conditional
image (starting) view (upper) and another at around a 120→rotation
from the starting view (lower).

show renderings from two viewpoints: one at the condi-
tional image (starting) view and another rotated at around
120↔from the starting view. We observe that for views

close to the conditional image, our method achieves ren-
dering quality similar to Cat3D and noticeably better than
ZeroNVS. However, as the viewpoint deviates from the con-
ditional image, Cat3D suffers from severe blurring, partic-
ularly in the background. By contrast, our method gener-
ates scenes with clearer textures, sharper details, and greater
consistency with the conditional images.

E. Limitations and Future Work

While our method achieves superior generation perfor-
mance and higher efficiency relative to prior work, there
remain some limitations.

First, the development of the model is time and com-
pute intensive. Although the inference process is efficient,
the inference speed of the video generation model remains
a bottleneck. Most of the compute time in our pipeline is
consumed during the video generation phase. This draw-
back could be mitigated via parallel computation; e.g., us-
ing xDiT (https://github.com/xdit-project/xDiT) for
parallel inference, or utilizing a more efficient denoising
strategy.

Second, our approach focuses on static scenes. We oc-
casionally observe motions in the generated videos, which
hampers the reconstruction effect. In future work, we will
aim to extend our pipeline to dynamic scenes, exploring its
potential for generating 4D content incorporating temporal
dynamics.

By addressing the aforementioned limitations, our
framework can be ameliorated for broader application with
enhanced performance.


