
Zero-Shot Monocular Scene Flow Estimation in the Wild

Supplementary Material

In this supplementary material, we present additional
technical details and evaluations pertaining to our model
architecture, dataset, and methodology. Please check our
supplementary video for a high-level overview and abundant
qualitative results with comparisons.

A. Additional Experimental Setting
Datasets. For evaluation on the Spring Dataset, we use a
subset of the training set {0005, 0009, 0013, 0017, 0023,
0037, 0044}. For VKITTI2, we designate Scene18 as the
test sequence due to its overlap with KITTI Scene Flow
training data, preventing data contamination. VKITTI2 is
created to reproduce several scenes of KITTI, thus we con-
sider methods trained on VKITTI2 to be in-domain with
KITTI experiments.

Implementation Details. All experiments are trained with
8 NVIDIA A100 GPUs for 50 epochs, which take 12 hours.
We accumulate gradients every 2 steps, and clip gradients by
norm value 0.5. We have 8 DDP processes with a batch size
of 4, thus our effective batch size is 4× 8× 2 = 64.

We select a learning rate of 1e−6 for the encoder-decoder,
1e−6 for the pointmap heads, and 1e−4 for the offset heads.
For the first 8 epochs, all learning rates start from 0.1 of
above values, and gradually warm up. Note that, differently
from DUSt3R [8] or MASt3R [4], our heads do not predict
confidence maps as we found empirically that they made our
training unstable.
Training Datasets. At each epoch, we re-sample 1e4 ex-
amples from the whole Data Recipe for training by bal-
ancing different datasets considering diversity and statis-
tics (Tab. 2). 10000 samples for each epoch is made of:
(SHIFT:2024, DynamicReplica:1942, VKITTI2:958, MOVi-
F:3560, PointOdyssey:1400, Spring:116). We resize and
crop all dataset samples into 288 × 512 resolution. For
stereo cameras, we ignore right camera frames.
Resolution/Scale Alignment. During evaluation, we resize
inputs to be width-512 and resize outputs later. If scale
alignment is required, we compute median scale between the
predicted and ground-truth pointmap following DUSt3R [8],
and scale both the pointmap and sceneflow.

Baselines. DUSt3R/MASt3R predict a pointmap for the
second frame in the first frame’s coordinate system. How-
ever, for scene flow, we need geometry for the second frame
in the second frame’s coordinate system. As such, for the
Spring and VKITTI2 datasets, we use the ground truth cam-
era pose to transform the pointmaps into the second frame’s

coordinate system such that we can create depth maps for
the second frame. For KITTI, we use DUSt3R’s [8] pose
estimation method to infer camera pose.
Resolution/Scale Alignment. For fariness, most methods re-
size inputs to be width-512 during inference. Self-Mono-
SF requires 256 × 832, while OpticalExpansion [9] re-
quires 384 × 1280. For DUSt3R / MASt3R, we multiply
pointmaps by estimating scaling factor. For Self-Mono-SF
and DepthAnythingV2-metric, the scale factor is computed
for each depth estimation/groundtruth pair.

Evaluation Metrics.

EPE: ∥ŝf − sf∥2 averaged over each pixel, where, ŝf
and sf denote the estimated and ground truth scene flows
respectively.

AccS: Percentage of points where EPE < 0.05 or relative
error < 5%.

AccR: Percentage of points where EPE < 0.1 or relative
error < 10%.

Out: Percentage of points where EPE > 0.3 or relative
error > 10%.

AbsRel: Absolute relative error |d∗ − d|/d.

δ1: Percentage of max(d∗/d, d/d∗) < 1.25.

B. Additional experiments
B.1. Does Joint Estimation Help?

Key to our method’s success is our design that forces the
model to predict geometry and scene flow jointly. To validate
this statement we present an ablation study in Tab. 1, which
shows different pretraining strategies.

Our analysis allows us to make a few observations. First,
we compare the performance of our method when we train
the offset head from scratch, and when we initialize it with
either DUSt3R or MASt3R’s pretrained model. Initializing
the offset head results in significantly lower (better) EPE
and AbsR-r numbers in Tab. 1. From them, the importance
of high-quality 3D priors for the offset head is therefore
clear, which also confirms the entanglement of depth and
motion predictions. Second, our approach outperforms the
combination of MASt3R, a state-of-the-art depth estima-
tion algorithm, and RAFT, a state-of-the-art optical flow
algorithm—and the algorithm we use to generate the pseudo
ground truth we train on. Our approach combining MASt3R
prior with the offset head achieves optimal results across
both scene flow (EPE: 0.452, AccR: 0.443) and depth met-
rics (AbsR-r: 0.111, δ1 − r: 0.927).



3D Prior Scene Flow Estimation Depth Estimation

EPE↓ AccS↑ AccR↑ Out↓ AbsR-r↓ δ1-r↑ AbsR-m↓ δ1-m↑
Ours (scratch) 1.071 0.420 0.442 0.957 0.353 0.433 0.547 0.049
Ours (DUSt3R [8]) 0.588 0.378 0.408 0.896 0.121 0.887 0.233 0.423
MASt3R [4] 3.708 0.264 0.267 0.999 0.108 0.929 0.245 0.288
Ours (MASt3R [4]) 0.452 0.398 0.443 0.873 0.111 0.927 0.236 0.345

Table 1. Ablation over Joint Estimation Pipelines. Verify the
effect of 3D Prior and Offset Heads on KITTI. In the table ‘Ours
(w)’ is our model initialized with the weights of method ‘w’.

Data Scene Flow Estimation Depth Estimation

EPE↓ AccS↑ AccR↑ Out↓ AbsR-r↓ δ1-r↑ AbsR-m↓ δ1-m↑
exclude 0.641 0.392 0.431 0.899 0.116 0.922 0.256 0.237
specific 0.569 0.317 0.393 0.911 0.090 0.925 0.580 0.095

all 0.452 0.398 0.443 0.873 0.111 0.927 0.236 0.345

Table 2. Ablation over Data Recipe on KITTI. all: using all
datasets for training. exclude: using all datasets, except for train set
of VKITTI2. specific: only using train set of VKITTI2.

B.2. Data Recipe is Key for Generalization

In Tab. 2, we explore how the datasets used in training af-
fect the performance on KITTI. We compare our method
performance with three training strategies: training on all
the datasets (all), training on all but VKITTI2 (exclude),
and training only on VKITTI2 (specific). Note that none
of these strategies train on KITTI. Unsurprisingly, training
with all datasets yields the best overall performance for both
scene flow and depth. However, when omitting VKITTI2,
which is the only driving dataset use, we maintain robust
performance (EPE: 0.641, AbsR-m: 0.256), which demon-
strates the generalization capabilities gained with diverse
data exposure.

B.3. Reference coordinate frame

DUSt3R and MASt3R make predictions of pointmaps from
pairs of images, where both sets of points are predicted in the
coordinate frame of the first camera C1. As scene flow esti-
mation does not typically assume camera poses, it is defined
as the (field of) vector from a 3D point in the first camera
frame C1 at time t1 to a 3D point in the second camera frame
C2 at time t2. This difference of output reference frames—
either always predicting in C1 or from C1 into C2—raises
the question of whether the reference coordinate frame is
important for prediction accuracy. This is especially true
given that we fine tune the DUSt3R network that operates
solely in C1.

We ran an experiment to change the reference scene flow
coordinate frame for our output scene flow: either 1) from
C1 into C2, 2) from C1 to C1 (sometimes called rectified
scene flow), or 3) within a world coordinate frame. Scene
flow training data labels are defined from C1 to C2 as in 1),
so to produce the vector from C1 to C1 we must reproject the
3D end point of the vector into C1’s reference frame using

Table 3. Changing reference coordinate frame for the end point
of scene flow. For synthetic data with known camera poses from
which to accurately translate coordinate frames for training data
and evaluation, there is no clear gain from any of the reference
frames (VKITTIv2, Spring). For real-world KITTI data, camera
poses may be in error, and we see large increases in scene flow
error when attempting to train and evaluate on scene flow data in a
different reference frame.

Reference frame Scene Flow Estimation Depth Estimation

VKITTI2 Dataset [1] EPE↓ AccS↑ AccR↑ Out↓ AbsR-r↓ δ1-r↑ AbsR-m↓ δ1-m↑
Known camera poses
World 0.154 0.744 0.830 0.511 0.140 0.856 0.222 0.682
Camera 1 0.202 0.808 0.886 0.449 0.139 0.858 0.210 0.711
Camera 2 0.190 0.780 0.876 0.484 0.137 0.859 0.236 0.634

Spring Dataset [6] EPE↓ AccS↑ AccR↑ Out↓ AbsR-r↓ δ1-r↑ AbsR-m↓ δ1-m↑
Known camera poses
World 0.010 0.986 0.998 0.812 0.265 0.600 1.132 0.043
Camera 1 0.012 0.990 1.000 0.811 0.272 0.594 0.716 0.103
Camera 2 0.013 0.989 0.999 0.813 0.280 0.597 0.679 0.119

KITTI [7] EPE↓ AccS↑ AccR↑ Out↓ AbsR-r↓ δ1-r↑ AbsR-m↓ δ1-m↑
Estimated camera poses
World 2.637 0.268 0.271 0.995 0.110 0.928 0.212 0.546
Camera 1 4.202 0.251 0.253 0.992 0.108 0.928 0.214 0.519
Camera 2 0.452 0.398 0.443 0.873 0.111 0.927 0.236 0.345

known ground truth camera poses. When computing metrics
like end point error or accuracy against ground truth scene
flow from C1 to C2, this transformation is also necessary.
For synthetic datasets like Spring and VKITTI2, the transfor-
mation is simple as camera poses are known. For VKITTI2,
the camera poses must be estimated and may be in error.

Table 3 shows that the choice of coordinate frame is
not significantly important when evaluated on Spring and
VKITTI2, with any reference frame scoring approximately
similarly. This suggests that the pretrained backbone can be
successfully fine tuned with scene flow data and our training
scheme for any coordinate frame. For VKITTI2, we observe
large drops in performance as the reference frame changes.
We attribute this to errors in the estimated camera poses,
which affect training and metric evaluation.

B.4. Additional quantitative evaluation

We show our method’s superiority with comparison with dif-
ferent checkpoints of previous monocular scene flow meth-
ods in Tab. 4.

B.5. Additional Qualitative Results

We show additional qualitative comparisons for KITTI
(Fig. 1). Overall, our approach is robust and performs con-
sistently better across different scenes.
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