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In this supplementary material, we further discuss the fol-
lowing content:
• Theoretical proof of the global optimality of our proposed

solvers in Sec. 4.2 and Sec. 4.3 of main paper (Sec. 1).
• Rounding and nearest rotation recovery implementation

(Sec. 2).
• Additional experiment analysis of our solvers on the syn-

thetic dataset (Sec. 3).
• Analysis of different RANSAC-based methods (Sec. 4).
• Additional experiment analysis of our solvers on the real-

world dataset (Sec. 5).

1. Theoretical Proof
In this section, we provide a theoretical proof of two pro-
posed SDP solvers.

⋆ Equal contribution.
B Corresponding author: Peidong Liu (liupeidong@westlake.edu.cn).

1.1. Preliminary Lemma

To begin with, define the multi block primal QCQP as:

min
xi∈Rn

l∑
i=1

x⊤
i Cixi

s.t.
l∑

i=1

x⊤
i Aijxi = bj , j = 1, . . . ,m.

(Primal QCQP)
The Lagrange dual of primal QCQP can be derived as:

max
y∈Rm

b⊤y

s.t. Ci −
m∑
j=1

yjAij ⪰ 0, i = 1, . . . , l.
(Dual SDP)

The dual of Lagrange dual of primal QCQP can be derived
as:

min
Xi∈Sn

l∑
i=1

trace(CiXi)

s.t.
l∑

i=1

trace(AijXi) = bj , j = 1, . . . ,m

Xi ⪰ 0, i = 1, . . . , l.
(Dual Dual SDP)

Based on Lemma 2.1 in [4], we can define the following
lemmas:

Lemma 1. Let H(y)i = Ci −
∑m

j=1 yjAij . x is proved
to be optimal for problem Primal QCQP, the strong duality
holds between Primal QCQP and Dual SDP if there exists
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xi ∈ Rn,y ∈ Rm satisfies:
∑l

i=1 x
⊤
i Aijxi = bj , j = 1, . . . ,m (Primal Feasibility)

H(y)i ⪰ 0, i = 1, . . . , l (Dual Feasibility)
H(y)ixi = 0, i = 1, . . . , l (Stationary Condition)

(1)

Lemma 2. In addition to Lemma 1, if H(y)i has corank
one, then all xix

⊤
i are the unique optimum of Dual Dual

SDP and all xi are the unique optimum of Primal QCQP.

Based on these two lemmas, we can prove the strong duality
of our methods as follows.

1.2. Full SDP Problem
Let us first revisit Full SDP Problem as:

min
W

trace(CW)

s.t. W0,0 =

4∑
i=1

W0,4(j−1)+i, j = 1, . . . ,m,

W0,k = Wk,k, k = 1, . . . , 4m,

trace({W0,0}i,j) =
{
1, i = j
0, i ̸= j

, ∀i, j ∈ {1, 2, 3},

W ⪰ 0,
(Full SDP Problem)

where

W ∈ S10(1+4m)×10(1+4m)
+

=


W0,0 W0,1 . . . W0,4m

W1,0 W1,1 . . . W1,4m

...
...

. . .
...

W4m,0 W4m,1 . . . W4m,4m

 .
(2)

Theorem 1. The duality gap of Full SDP Problem is zero
under the noise-free and outlier-free condition. The Full
SDP Problem solver guarantees that the optimal solution
with rank 1.

Proof: Let we simplify the Full SDP Problem as:

min
W

trace(CW)

s.t. trace(A1W) = 0, j = 1, . . . ,m,

trace(A2W) = 0, k = 1, . . . , 4m,

trace(A3W) = 0,

trace(A4W) = 1, trace(A5W) = 1,

trace(A6W) = 1,

W ⪰ 0,
(Full SDP Problem)

where the corresponding Lagrange multipliers defined as:

y =
[
y1 ∈ Rm;y2 ∈ R4m; y3; y4; y5; y6

]
. (3)

Given the ground truth vanishing points [d∗
1;d

∗
2;d

∗
3] and

permutation matrix Q∗, we can derive the optimal ω∗ as:

ω∗ = [D
∗
; vec(Q∗)⊗D

∗
], (4)

where D
∗
= [d∗

1;d
∗
2;d

∗
3; 1] represents the homogeneous

vector. Then, let y = 0 become a zero vector. This implies
that H(y) = C and ω∗⊤H(y)ω∗ = ω∗⊤Cω∗.

Since ω∗ satisfies our primal feasibility and C is diag-
onally symmetric, which implies H(y) ⪰ 0. In addition,
ω∗⊤Cω∗ = 0 =⇒ Cω∗ = 0. Thus the relaxation is tight
according to Lemma 1. Since ω is the only nonzero solu-
tion to ω⊤H(y)ω = 0 up to scale, according to our Lemma
2, our Full SDP Problem can always return the optimal so-
lution. □

1.3. Single Block SDP Problem
Let us revisit Single Block SDP Problem as:

min
W

trace(CW)

s.t. W0,0,1 =

2∑
i=1

trace(W0,j,i), j = 1, . . . ,m,

W0,j,i = Wj,j,i, ∀i ∈ {1, 2}, j = 1, . . . ,m,

trace(W0,0,1) = 1, W0,0,1 = W0,0,2,

W∗,∗,i ⪰ 0, ∀i ∈ {1, 2},
(Single Block SDP Problem)

where the tensor W ∈ R3(m+1)×3(m+1)×2 with its block
structure is defined as:

W∗,∗,i =


W0,0,i W0,1,i . . . W0,m,i

W1,0,i W1,1,i . . . W1,m,i

...
...

. . .
...

Wm,0,i Wm,1,i . . . Wm,m,i

 .

(5)
Besides, the auxiliary tensor C ∈ R3(m+1)×3(m+1)×2 is
defined as:{

C∗,∗,1 = diag([03×3,n1n
⊤
1 , . . . ,nmn⊤

m])
C∗,∗,2 = diag([03×3, c

2I3, . . . , c
2I3])

(6)

Theorem 2. The duality gap of Single Block SDP Prob-
lem is zero under the noise-free and outlier-free condition.
The Single Block SDP Problem solver guarantees that the
optimal solution with rank 1.

Proof: Let we simplify the single block QCQP as:

(x∗
1,x

∗
2) = arg min

x1,x2

x⊤
1 C1x1 + x⊤

2 C2x2

s.t. x⊤
1 A1jx1 = b1j , j = 1, . . . ,m1,

x⊤
2 A2jx2 = b2j , j = 1, . . . ,m2,

x⊤
1 A3j1x1 + x⊤

2 A3j2x2 = b3j ,

j = 1, . . . ,m3.
(7)



After setting all Lagrange multipliers to zero, we have
H(y)1 = C1 and H(y)2 = C2, respectively. Since we
assume that all lines are inliers, the ground truth x1 and x2

can be defined as:

x∗
1 = [d∗;d∗; . . . ;d∗],

x∗
2 = [d∗;0; . . . ;0],

(8)

where d∗ denotes the ground truth 3D line direction. The
primal feasibility is always satisfied and the dual feasibility
can be verified as:

0 = x∗⊤
1 H(y)1x

∗
1 ≤ x⊤

1 H(y)1x1,

0 = x∗⊤
2 H(y)2x

∗
2 ≤ x⊤

2 H(y)2x2,

x⊤
1 A3j1x1 + x⊤

2 A3j2x2 = b3j .

(9)

This equation can also verify the stationary condi-
tion. Since x∗

1 and x∗
2 are the only nonzero solutions of

x⊤H(y)1x = 0 and x⊤H(y)2x = 0 up to scale, respec-
tively. The Single Block SDP Problem can always return
the optimal solution with rank 1. □

2. Rounding and Nearest Rotation Recovery

Due to observation noise and numerical approximation fac-
tors, the solutions obtained by the SDP optimizer may not
strictly satisfy the rank-1 condition. Therefore, we need to
employ a rounding strategy to recover from matrices ap-
proximated to rank 1. In addition, due to these approximate
operations, the vanishing point matrix we obtain does not
strictly adhere to the rotation matrix constraint. Hence, we
need to employ a simple operation to restore the rotation
matrix.

2.1. Rounding Procedure

Given a rank-1 approximation matrix W ∈ Rn×n, the goal
of the rounding operation is to obtain the optimal rank-1
approximation vector w. We formulate the problem as fol-
lows:

w = arg min
w∈Rn

∥∥ww⊤ −W
∥∥2
F

s.t. ∥w∥22 = 1.
(10)

Utilizing the Frobenius norm, we can obtain an analytical
solution that minimizes the norm error through Singular
Value Decomposition (SVD) as:

UΣV⊤ = SVD(W),

w =
√
σ1[U]∗,1,

(11)

where σ1 denotes the maximum singular value in Σ =
diag(σ1, σ2, σ3).

2.2. Closed-Form Nearest Rotation Estimation
Given a stacking rounding direction matrix M =
[w1,w2,w3], the goal of the nearest rotation matrix estima-
tion is to obtain a matrix R ∈ SO(3) that satisfies the ro-
tation matrix constraint with the minimum Frobenius norm
error as:

R = arg min
R∈SO(3)

∥R−M∥2F (12)

Similarly, the closed-form solution can be obtained as:

UΣV⊤ = SVD(M),

R = UΣ
′
V⊤,

(13)

where Σ
′
= diag(1, 1, det(UV⊤)).

3. Additional Synthetic Experiments

Complete accuracy comparisons across outlier ratios.
We show the complete accuracy results across outlier ratios
in Fig. 1. While only the F1-score is shown in Sec. 5.1.2,
this figure includes precision and recall as well. GlobustVP
consistently demonstrates superior robustness and accuracy
across varying outlier ratios.
Accuracy comparisons across noise levels. We fix the
number of lines at 60 and the outlier ratio at 20%, while
varying the standard deviation of zero-mean Gaussian noise
from 1 to 5 pixels. All statistical analyses are performed
over 40 independent Monte Carlo trials. Fig. 2 shows the
precision, recall, and F1-score as the noise level increases.
Recall and F1-score reveal that RANSAC, J-Linkage, T-
Linkage, and Quasi-VP are highly sensitive to noise. BnB
begins to degrade significantly when the noise reaches 4
pixel of noise. In contrast, GlobustVP maintains consistent
performance across varying noise levels.
Complete accuracy and efficiency comparisons across
line counts. In Sec. 5.1.2 of main paper, we present com-
parisons of GlobustVP with RANSAC and BnB only. Here,
we provide the complete accuracy and efficiency results for
all methods. Fig. 3 shows the F1-score and runtime con-
cerning the increasing number of lines with all methods.
GlobustVP demonstrates consistent performance on both
accuracy and efficiency as the number of lines increases.
Ablation study on uncertainty. Following [6–8], we de-
rive the uncertainty for each line segment and incorporate it
into (d⊤n)2. We conduct an ablation study to evaluate its
impact on accuracy (i.e., F1-score) across 500 independent
Monte Carlo trials with 60 lines. We vary the noise levels
while keeping the outlier ratio fixed at 20%, and vary the
outlier ratio while fixing the noise level at σ = 3. As shown
in Fig. 4, incorporating uncertainty slightly improves per-
formance, while our original method (i.e., w/o uncertainty)
achieves comparable results.
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Figure 1. Accuracy comparisons on the synthetic dataset with respect to the outlier ratios: boxplots of precision (top), recall (middle), and
F1-score (bottom). Best viewed in color and high resolution.

4. Analysis of RANSAC-Based Methods

In Sec. 5.1 of main paper, we use a RANSAC-based
method [14] (denoted as RANSAC) as a baseline for com-
parison with GlobustVP. The setup includes a maximum of
1,000 iterations, ensuring a 0.99 confidence level that a sub-
set comprised solely of inliers is selected.

To ensure a fair and comprehensive comparison, we fur-
ther analyze the performance of RANSAC and its variants.
Specifically, we include two RANSAC variants: a slower
version (denoted as RANSAC-10K), which allows up to
10,000 iterations to match the runtime of GlobustVP, and
MAGSAC [1, 2], a state-of-the-art RANSAC-based method
designed to improve accuracy.

We evaluate these methods on the YUD [5] and SU3 [15]
datasets, using the AA metric described in Sec. 5.2.1 of
main paper. As shown in Tab. 1, RANSAC achieves the
fastest runtime due to its limited iterations, but its accu-
racy is significantly lower compared to the other meth-
ods. RANSAC-10K improves accuracy over RANSAC
on all metrics, albeit at the cost of increased runtime. On
SU3 [15], MAGSAC surpasses RANSAC-10K in accuracy
on all angular thresholds while consuming slightly more
time. However, on YUD [5], RANSAC-10K outperforms
MAGSAC in AA@3◦ and AA@10◦.

Our proposed GlobustVP consistently outperforms all
RANSAC-based methods on YUD [5] across all accuracy
metrics. On SU3 [15], GlobustVP demonstrates superior
performance in AA@3◦ and AA@5◦ while slightly lagging
behind MAGSAC in AA@10◦. These results highlight the
balanced trade-off between accuracy and runtime efficiency
achieved by GlobustVP across both YUD [5] and SU3 [15]
datasets.

Dataset Method AA@3◦ ↑ AA@5◦ ↑ AA@10◦ ↑ Time (ms) ↓

YUD [5]

RANSAC [14] 53.3 64.7 78.4 9.0
RANSAC-10K [14] 56.1 70.6 82.4 48.8
MAGSAC [1] 52.6 73.2 81.7 12.4
GlobustVP (Ours) 67.6 87.3 96.1 48.8

SU3 [15]

RANSAC [10] 48.2 74.0 82.8 9.0
RANSAC-10K [10] 70.6 80.4 86.2 48.8
MAGSAC [1] 76.2 84.6 92.8 9.2
GlobustVP (Ours) 80.2 86.8 92.4 48.8

Table 1. Angular accuracy and runtime comparisons of RANSAC-
based methods and GlobustVP on YUD [5] and SU3 [15] datasets.
The best and second-best performance for each metric are high-
lighted.



1 2 3 4 5
70

80

90

100

P
re

c
is

io
n

 (
%

)

1 2 3 4 5
0

50

100

R
e
c
a
ll
 (

%
)

1 2 3 4 5

Noise level (pixel)

0

50

100

F
1
-s

c
o

re
 (

%
)

BnB J-Linkage Quasi-VP RANSAC T-Linkage Ours

Noise level (pixel)
Figure 2. Accuracy comparisons on the synthetic dataset with respect to the noise levels: boxplots of precision (top), recall (middle), and
F1-score (bottom). Best viewed in color and high resolution.
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Figure 3. Accuracy and efficiency comparisons of all baseline methods on the synthetic dataset with respect to the number of image lines.
Best viewed in color and high resolution.

5. Additional Real-World Experiments

5.1. York Urban Database

Accuracy comparisons. We provide a quantitative com-
parison of the baseline methods on YUD [5] in terms of
F1-score and consistency error, as shown in Fig. 5. We
observe that RANSAC, J-Linkge, and T-Linkage strug-
gle to achieve satisfactory accuracy, with up to 30% im-
ages displaying a sub-optimal F1-score (below 90%) and a

large consistency error exceeding 2.25 pixels. While BnB
demonstrates notable accuracy, it encounters convergence
issues on a subset of images, leading to sub-optimal so-
lutions. The performance of Quasi-VP falls between that
of RANSAC and BnB, providing only a moderate level of
accuracy. In contrast, GlobustVP achieves the highest ac-
curacy by leveraging a global solver technique. Further-
more, to evaluate the accuracy of vanishing point estima-
tion, we follow [6] and compute the angular differences be-
tween the estimated and the ground truth dominant direc-
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incorporating uncertainty. Best viewed in color.

tions. The corresponding histogram of the angular differ-
ences on YUD [5] is shown in Fig. 6. The results demon-
strate that approximately 50% of the estimated dominant di-
rections have angular difference less than 2◦. This demon-
strates that GlobustVP achieves excellent angular accuracy
in vanishing point estimation.

Additional representative comparisons. We provide ad-
ditional representative evaluation results on YUD [5] us-
ing the manually extracted image lines with 2 and 3 van-
ishing points (VPs), as shown in Fig. 7. Furthermore, to
further demonstrate the performance of GlobustVP on real-
world images, we use YUD [5] and apply the Line Seg-
ment Detector (LSD) [13] to extract image lines. Subse-
quently, we estimate vanishing points using various meth-
ods and evaluate their accuracy. It is important to note that
the extracted image lines inherently contain some outliers.
The results in Fig. 8 demonstrate a performance degradation
of previous methods compared to those using manually ex-
tracted image lines. Specifically, while RANSAC achieves
a higher recall (86.17%) due to its larger number of inliers,
it also generates a greater number of incorrectly clustered
lines, with a precision rate of 60.00%. Furthermore, BnB
shows sub-optimal recall performance, as previously dis-
cussed in [10]. In contrast, both Quasi-VP and GlobustVP
achieve a balanced performance in terms of precision and
recall. Notably, GlobustVP exhibits lower consistency error
than other approaches, due to its inherent global optimality.

5.2. NYU-VP Dataset

To further evaluate the performance of GlobustVP, we con-
duct additional experiments on the NYU-VP dataset [9].
The dataset contains ground truth vanishing points for 1449
indoor scenes, with line segments extracted from the images
using LSD [13]. The results shown in Fig. 9 demonstrate
that GlobustVP produces a higher number of inliers than
previous approaches.
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Figure 5. Accuracy comparisons on all images of YUD [5] using the manually extracted image lines. Left: F1-score of line-VP association.
Right: Cumulative histogram of the consistency error. Best viewed in color.
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Figure 6. Histogram of angular differences between the estimated
and the ground truth dominant directions on YUD [5].



Lines

2 VPs
95 lines

Ground Truth

2 VPs
95 lines

RANSAC [14]

98.92%, 96.84%
97.87%, 0.43 pix

J-Linkage [12]

97.87%, 98.95%
98.41%, 0.41 pix.

T-Linkage [11]

98.92%, 97.89%
98.40%, 0.39 pix.

BnB [3]

100%, 100%
100%, 0.16 pix.

Quasi-VP [10]

97.22%, 72.92%
83.33%, 1.22 pix.

GlobustVP (Ours)

100%, 100%,
100%, 0.07 pix.

Lines

3 VPs
129 lines

Ground Truth

3 VPs
129 lines

RANSAC [14]

96.46%, 84.50%
90.08%, 0.45 pix.

J-Linkage [12]

89.09%, 83.76%
86.34%, 1.24 pix.

T-Linkage [11]

91.89%, 85.00%
88.31%, 0.63 pix.

BnB [3]

87.60%, 87.60%
87.60%, 0.52 pix.

Quasi-VP [10]

99.11%, 86.05%
92.11%, 0.31 pix.

GlobustVP (Ours)

100%, 100%
100%, 0.01 pix.

Figure 7. Representative comparisons on YUD [5] using the manually extracted image lines. Different line-VP associations are shown
in respective colors. The numbers below each image represent the respective precision ↑, recall ↑, F1-score ↑, and consistency error ↓ of
line-VP association. Best viewed in color and high resolution.
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Lines by LSD [13]

3 VPs, 150 lines

RANSAC [14]

34 inliers

BnB [3]

36 inliers

Quasi-VP [10]

39 inliers

GlobustVP (Ours)

70 inliers

3 VPs, 304 lines 43 inliers 72 inliers 70 inliers 127 inliers

Figure 9. Representative comparisons on NYU-VP dataset [9] using the automatically extracted image lines by LSD [13]. Different line-
VP associations are shown in respective colors. The number below each image represents the number of inliers identified by each method.
Best viewed in color and high resolution.
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