
SPC-GS: Gaussian Splatting with Semantic-Prompt Consistency for Indoor
Open-World Free-view Synthesis from Sparse Inputs

Supplementary Material

In this appendix, we present additional materials to sup-
port and extend the findings and observations presented in
the main body of this paper.

• Section A presents more details of the Scene-layout-
based Gaussian Initialization (SGI) strategy.

• Section B elaborates on additional experimental details of
our approach.

• Section C offers extended experimental analyses to show-
case the effectiveness of our method.

• Section D presents more qualitative results to facilitate
better visual comparisons.

• Section E provides per-scene quantitative evaluation re-
sults for more comprehensive comparisons.

A. More Details of Scene-layout-based Gaus-
sian Initialization (SGI)

Our proposed SGI strategy includes two main components:
VGM-based Point Creation and Scene-layout Point Gener-
ation. i) The first component aims to produce denser SfM
points by leveraging additional view-changed images that
are generated from the original sparse training views. ii)
The second component yields an instructive scene-layout
point distribution for enhanced Gaussian initialization.

Specifically, in the VGM-based Point Creation process,
eight neighboring views {Ĩji }8j=1 are generated for each
original training image Ii using the image-to-video gener-
ation mode of the advanced video generation model Mo-
tionCtrl [47]. Fig. 8 shows these additional view-changed
images (denoted by the blue border) alongside the original
training view (indicated by the red border). Subsequently,
the generated images are combined with the original train-
ing images for SfM processing, yielding denser initialized
SfM points. As shown in Table 5, we can see that sparse-
input training images alone yield limited SfM points. Aug-
menting the training images with view-changed images in-
creases the amount of SfM points. Furthermore, the Scene-
layout Point Generation further produces a scene-layout-
wise Gaussian point distribution, serving as an enhanced
and instructive initialization prior. Moreover, these results
also can be found in Fig. 9.

In general, these results demonstrate that our full SGI
framework effectively provides dense and instructive points
for Gaussian initialization, which promotes scene Gaussian
representation, and consequently, enhances semantic Gaus-
sian learning in sparse-input scenarios.

Figure 8. Illustration of training image (red border in the center)
and corresponding generated images (blue border).

Scene SfM Points
SfM Points with Scene Layout
Generated Views Points from SGI

Room0 122 6527 57524
Room1 52 5628 58334
Room2 22 2659 54308
Office0 474 5452 41989
Office2 140 2864 44836
Office4 110 3621 29115

Scene0004 70 4027 64016
Scene0389 19 1207 22901
Scene0494 6 3125 37195
Scene0693 48 2911 44060

Table 5. Number of Gaussian points in various settings. “SfM
Points” refers to the initialized Gaussian points derived from the
Structure-from-Motion (SfM) algorithm using sparse training im-
ages. “SfM Points with Generated Views” indicates the initialized
SfM Gaussian points derived from the SfM algorithm using train-
ing and generated images. “Scene Layout Points from SGI” de-
notes the Gaussian points obtained from the Scene-layout Gaus-
sian Initialization (SGI) strategy, which are treated as initialized
Gaussian points to optimize the Gaussian radiance field.

B. Elaborated Experimental Details

B.1. Datasets

To evaluate the performance of our approach, we conduct
sparse-input open-world free-view synthesis experiments
on two widely-used benchmark indoor scene datasets:
Replica [42] and ScanNet [8].
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Figure 9. Visualization of Gaussian point distributions of different scenes: (a) Sparsely distributed SfM points from limited training views;
(b) Denser SfM points distribution using generated images and training images; (c) Instructive point distribution obtained via our Scene-
layout-based Gaussian Initialization (SGI) strategy, demonstrating improved scene layout coverage that enhances reconstruction quality
and consequently improves segmentation accuracy.

Replica is a synthetic scene dataset comprising diverse,
high-quality indoor room-scale environments. Each scene
features photo-realistic textures, dense geometry, and se-
mantic classes. For experiment evaluations, six commonly
evaluated scenes from Replica are utilized: room0, room1,
room2, office0, office2, and office4. Following 3DOVS
[31], 45 categories are used for text queries: candle, book,
vent, box, comforter, switch, bin, plant stand, bed, desk
organizer, rug, bench, vase, bottle, ceiling, blanket, bowl,
camera, wall, blinds, pillar, sculpture, tablet, chair, lamp,
indoor plant, cabinet, stool, table, cushion, panel, plate,
basket, pot, tissue paper, nightstand, sofa, window, picture,
wall plug, tv screen, shelf, door, floor, clock.

ScanNet is a real-world indoor scene dataset that in-
cludes semantic segmentation labels and camera poses pro-
vided by BundleFusion [9]. For evaluation, four scenes
are selected from ScanNet: scene0004 00, scene0389 00,
scene0494 00, and scene0693 00. The commonly used 20
categories defined by ScanNet are used for text queries:
wall, floor, cabinet, bed, chair, sofa, table, door, win-
dow, bookshelf, picture, counter, desk, curtain, refrigerator,
shower curtain, toilet, sink, bathtub, other furniture.

Following the sparse-input experimental protocol out-
lined in [25, 60], we select every 10-th image in the se-
quence from each scene as the testing view, resulting in 22
to 30 testing images per scene for evaluation. From the re-
maining images, we uniformly sample 12 views to construct
the sparse training set. The resolution of all images is set to
640 × 448. During training, RGB images from the training
set are utilized for scene reconstruction, with CLIP-derived

semantic features applied for semantic Gaussian learning.
For evaluation, only the RGB images and ground-truth se-
mantic labels from the testing set are utilized.

B.2. Implementation Details

Data Prerocessing. Before training, CLIP features are pre-
computed offline, following prior methods [31, 59]. The
generated images of each training view are obtained using
MotionCtrl [47] under the image-to-video mode.
Training. We set the learning rate as 0.0025 for Gaussian
semantic parameters, while convolution layers ωf and ωs
are optimized using Adam with the learning rate of 0.0005.
The Outlier Gaussian Primitive Removal (OGR) strategy is
implemented every 3k iterations. We first train our model
to derive a scene-layout Gaussian point distribution through
10k iterations. These points are then used to initialize Gaus-
sian positions, color attributes (using zero-order spherical
harmonics), and semantic attributes, which undergo train-
ing for 10k iterations. The entire process costs 45 minutes
on average per scene on one A100 GPU.
Inference. During inference, we project 3D Gaussians onto
the 2D plane, concurrently producing rendered RGB images
and rendered semantic features in novel views. Following
previous 3D open-world segmentation methods [31, 35], a
set of text queries are utilized to calculate the cosine simi-
larity between these text features and the rendered features,
generating the open-vocabulary segmentation results. Our
approach achieves a rendering speed of over 300 FPS at a
resolution of 640 × 448.



Method
Replica [42] ScanNet [8]

PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑
3DOVS [31] 13.326 0.520 0.656 8.859 41.909 18.836 0.652 0.535 24.001 72.863

Feature 3DGS [59] 18.154 0.708 0.339 16.357 64.955 19.702 0.678 0.403 21.053 72.722
Gau-Grouping [50] 17.787 0.709 0.350 20.252 66.519 19.189 0.682 0.419 33.549 73.624
DNGaussian [25] 19.964 0.749 0.370 23.692 70.705 20.231 0.706 0.451 32.122 74.895

FSGS [60] 20.371 0.768 0.285 23.721 71.235 21.875 0.730 0.386 34.610 77.840
CoR-GS [56] 20.066 0.779 0.290 22.496 68.901 21.801 0.735 0.388 34.170 77.944

Ours 22.123 0.800 0.248 29.173 75.482 23.042 0.755 0.359 50.271 83.584

Table 6. Quantitative comparison of reconstruction and segmentation results on novel views in Replica and ScanNet datasets, using the
CLIP-LSeg [24] to optimize Gaussian semantic attributes with 12 training views. Our approach achieves superior results across all metrics
on various datasets.

C. Additional Analyses

In this section, we present additional experimental results
to further validate the robustness of our proposed method.
Specifically, we conduct comparative analyses using vari-
ous vision-language foundation models, such as CLIP-LSeg
[24] and APE [40], which have been adopted in prior works
[36, 59] for optimizing Gaussian semantic attributes. Fur-
thermore, we include a comparative study with ViewCrafter
[53]. Additionally, we provide more comprehensive abla-
tion studies to evaluate the effectiveness of different com-
ponents within our framework.

C.1. Results using CLIP-LSeg Model
To assess the effectiveness and generalizability of our ap-
proach, we utilize CLIP-LSeg [24] for semantic Gaussian
optimization and report the quantitative results in Table 6.

i) Comparison with 3D Open-vocabulary Segmentation
Methods. As shown in Table 6, we see that our method con-
sistently surpasses competitors across all metrics on various
datasets when using CLIP-LSeg [24] to optimize Gaussian
semantic attributes, while other approaches encounter sig-
nificant challenges under the sparse input condition.

Specifically, the state-of-the-art method Gau-Grouping
[50] demonstrates relatively low reconstruction quality and
limited performance in open-world segmentation. This is
because it uses sparse SfM points for Gaussian initializa-
tion, which hampers its ability to represent complex indoor
scenes, resulting in inferior reconstruction quality and im-
paired segmentation precision. Additionally, Gau-Grouping
only applies supervision to Gaussians within sparse train-
ing views, leading to the under-optimization problem. As
a result, this method tends to overfit the training views
while producing less accurate results for novel viewpoints.
In comparison, our method utilizes dense scene-layout
points and semantic-prompt consistency constraints, yield-
ing improvements of 3.97 PSNR and 8.92% mIoU over the
second-best method on the Replica benchmark. These re-
sults highlight the effectiveness of our approach for open-
world free-view synthesis with sparse inputs.

ii) Comparison with Sparse-input Free-view Synthesis
Methods. In Table 6, although methods like DNGaussian,
FSGS, and CoR-GS achieve improved novel view quality
by incorporating additional depth or color regularizations
to optimize sparse-view Gaussian radiance fields, our ap-
proach consistently surpasses them in both reconstruction
quality and semantic understanding accuracy. These im-
provements can be attributed to the effectiveness of our SGI
strategy in enhancing Gaussian representation and the SPC
regularization in boosting segmentation accuracy.

In general, these quantitative results validate the effec-
tiveness and generalizability of our approach in 3D indoor
open-world free-view synthesis from sparse input images,
optimized across different CLIP models. Moreover, the
qualitative results using CLIP-LSeg to optimize Gaussian
semantic attributes. can be found in Section D and Fig. 17.

C.2. Results using APE Model
Following GOI [36], we utilize the same Aligning and
Prompting Everything All at Once (APE) model [40] to ex-
tract 2D semantic features from training views, which are
treated as the 2D ground truth semantic features for opti-
mizing Gaussian semantic attributes. Since GOI only sup-
ports single-query segmentation results using a vocabulary,
rather than generating a relevancy map at a time as outlined
in its paper [36], we adopt this single-query segmentation
setting to produce sparse-input open-world free-view syn-
thesis results. In line with GOI’s implementations, we em-
ploy the sparse-input training images for optimization, and
then evaluate the single-query performance in novel views
for comparisons.

The single-query segmentation results on ScanNet and
Replica test data are illustrated in Fig. 10. It can be seen
that GOI generates vague reconstruction results in novel
viewpoints. This can be attributed to its limited Gaussian
representation stemming from sparse Gaussian point initial-
ization. Consequently, inheriting the bottleneck of inferior
Gaussian representation, GOI easily faces challenges and
produces incomplete and noisy segmentation results under
sparse input conditions.
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Figure 10. Comparison of reconstruction (rows 1, 3) and open-
vocabulary segmentation (rows 2, 4) results on novel views across
diverse scenes from the ScanNet and Replica datasets using APE
[40] for optimizing Gaussian semantic attributes. Compared to
GOI, our approach demonstrates photo-realistic appearance details
and more complete segmentation results.

Method
Replica [42] ScanNet [8]

PSNR SSIM LPIPS PSNR SSIM LPIPS
ViewCrafter [53] 19.207 0.762 0.325 17.262 0.697 0.468

Ours 22.011 0.792 0.254 22.401 0.741 0.368

Table 7. Quantitative results of reconstruction on novel views.

C.3. Comparison with ViewCrafter
ViewCrafter [53] employs a pre-trained video generation
model to synthesize additional views, aiming to enhance
sparse-view 3DGS optimization. However, it inherits the
color shift artifacts commonly associated with diffusion
models, often generating reasonable structures with inaccu-
rate color representations, as shown in the left part of Fig.
11. As a result, its reconstruction performance is inferior,
as shown in Table 7 and Fig. 11.

C.4. More Ablation Studies
In this section, we present more ablation analyses of our
approaches for a more comprehensive analysis.
Effectiveness of OGR. To assess the effectiveness of the
Outlier Gaussian Primitive Removal (OGR), we present ab-
lation results in Fig. 12 and #b of Table 8. As depicted in

OursViewCrafterView 2View 1

Results of rendered novel viewsGenerated views derived from ViewCrafter

Color Shift

Figure 11. Visual results. Compared to ViewCrafter, our approach
exhibits more photo-realistic appearance details.

Case Configuration
Replica [42]

PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑

#a Ours (Full Setting) 22.011 0.792 0.254 23.960 63.262

#b w/o OGR 21.889 0.790 0.258 22.501 62.085
#c w LGR 20.296 0.761 0.304 19.864 57.812
#d w 2D CLIP for Linter 21.906 0.790 0.259 23.139 62.596

Table 8. Further ablation results of our approach with various set-
tings.

Ours w/o OGR Ours w OGR

Figure 12. Comparison of Gaussian point clouds with and without
Outlier Gaussian Primitive Removal (OGR) strategy. Applying
the OGR can reduce outlier Gaussian primitives, facilitating the
optimization of Gaussian representations and enhancing results.

Fig. 12, the omission of OGR results in an increased pres-
ence of outlier Gaussian primitives. These excessive outlier
primitives, when used for subsequent Gaussian initializa-
tion, complicate the optimization stage, leading to perfor-
mance degradation as shown in configuration #b of Table 8.
These findings demonstrate the efficacy of the OGR strat-
egy in mitigating outlier proliferation, preserving Gaussian
representation quality, and enhancing rendering results.
Impact of Generated-view Color Supervision. To investi-
gate the impact of color supervision LGR provided by gen-
erated images, we present the ablation results in #c of Table
8 and Fig. 13. It can be observed that the addition of color
supervision LGR leads to performance degradation. This
occurs because the reconstruction task is highly sensitive
to erroneous color pixels in generated images, as these in-
accuracies can significantly degrade reconstruction quality,
with even minor color inconsistencies affecting reconstruc-
tion quality, as illustrated in Fig. 13.
Analysis of the Pseudo Supervision Signals. To analyze
the effectiveness of using self-rendered semantic represen-
tations from training views for supervising pseudo views in
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Figure 13. Visual ablation results for using generated-view color
supervision LGR. Incorporating color supervision LGR (“Ours
w LGR”) provided from generated RGB images produces inferior
results compared to without using LGR (“Ours”).

Case Configuration PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑

#a Baseline 17.134 0.678 0.369 14.899 51.255
#b #a + SGI* 20.914 0.782 0.284 18.865 57.032
#c #b + SPC 21.806 0.792 0.254 23.202 62.057

Table 9. Ablation results of our SGI strategy incorporating only
vanilla reconstruction loss LC and semantic loss LS (Eq. (3)).

Linter (i.e. Eq. (5)), we replace them with the 2D CLIP-
derived semantics from training views. As shown in #d of
Table 8, this replacement leads to degraded performance.
This demonstrates the advantage of self-rendered semantic
representations derived from the 3D radiance fields exhibit
superior coherent and reliable information over the 2D rep-
resentations, enhancing overall optimization.
Analysis of the View Constraint in SGI. We examine
the effect of view constraints on 3D Gaussian densifica-
tion within the SGI by utilizing only two components: the
vanilla reconstruction loss LC and semantic loss LS (Eq.
(3)), denoted as SGI* in Table 9. The experimental results
demonstrate that our SGI strategy also achieves significant
improvements, while the additional application of SPC fur-
ther enhances performance. These findings indicate that our
SGI can generate effective scene-layout Gaussian distribu-
tions without relying on specific view constraints.
Analysis of the Hyperparameter for Region Boundary
Erosion. Table 10 presents an experimental analysis of the
erosion hyperparameter used for Region Boundary Erosion.
Specifically, the configuration 3 × 3 indicates that a pixel
M′(x, y) is retained as “True” only if all pixels within its
3×3 neighborhood in the input original mask M are “True”;
otherwise, it is assigned “False”. This operation effectively
contracts region boundaries inward.

The experimental results demonstrate that increasing the
size of the erosion hyperparameter, i.e. using a larger ker-
nel, helps reduce the number of ambiguous Gaussian prim-
itives near object boundaries, thereby improving perfor-

Case Configuration PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑

#a 1 × 1 21.876 0.792 0.255 23.270 61.409
#b 3 × 3 21.901 0.791 0.255 23.474 62.485
#c 5 × 5 22.011 0.792 0.254 23.960 63.262
#d 7 × 7 21.920 0.792 0.255 23.388 62.314
#e 9 × 9 21.950 0.792 0.255 23.182 62.349

Table 10. Analysis of the erosion hyperparameter for Region
Boundary Erosion.

Point Prompts #Train PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑

Number=1 (Base) ∼45mins 22.011 0.792 0.254 23.960 63.262
Number=2 ∼50mins 22.044 0.792 0.254 24.089 63.365
Number=3 ∼55mins 22.034 0.792 0.254 24.364 63.440

Table 11. Performance for the Iterative Stochastic Prompting (ISP)
approach with different settings.

mance. However, excessive erosion diminishes the number
of available Gaussians for optimization, potentially limiting
performance. Based on these empirical findings, we adopt
the 5× 5 configuration as the final parameter choice.
Analysis of the Number of Point Prompts in ISP. In Table
11, we evaluate the performance across varying quantities
of point prompts used to establish region mask correspon-
dences. The experimental results demonstrate that increas-
ing point prompt quantities yields performance compara-
ble to the baseline configuration. This finding suggests that
the iterative stochastic design in the base ISP effectively
generates a uniform distribution of points across the entire
image space as the training processes. This enables effi-
cient construction of region mask correspondences across
diverse image regions. Overall, given the additional train-
ing time required for incorporating more point prompts and
their marginal performance gains, we opt not to include fur-
ther point sampling in the final framework.
Analysis of Lower-Order Spherical Harmonics (SH). As
shown in Table 12, employing lower-order SH under gen-
erated view constraints (with LGR) partially alleviates the
performance drop in evaluation metrics. However, a notice-
able degradation still occurs, primarily due to color inaccu-
racies in the generated images.
Analysis of Varying Numbers of Training Views. As il-
lustrated in Fig. 14, our method demonstrates strong ro-
bustness when using varying numbers of training views in
Room0, ranging from very sparse (fewer than 10 views,
where COLMAP fails) to dense view configurations. The
superior segmentation performance is attributed to the pro-
posed semantic-prompt consistency regularization strategy.

C.5. Limitation Analysis and Future Work
While our SPC-GS framework demonstrates notable advan-
tages in sparse-input open-world free-view synthesis, it is
currently limited to static 3D scenes, as it does not incor-
porate dynamic Gaussian modeling or time-dependent opti-



Loss SH Setting
Room0 Scene

PSNR SSIM LPIPS mIoU mAcc
wo LGR Ours (SH=3) 20.872 0.704 0.322 16.330 52.486

w LGR

SH=0 19.040 0.674 0.372 15.066 45.537
SH=1 18.791 0.669 0.376 13.953 45.471
SH=2 18.780 0.668 0.378 13.664 44.995
SH=3 18.766 0.664 0.380 12.358 44.700

Table 12. Results of different spherical harmonics parameters.
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Figure 14. Results using 10, 12, 24, 48, and 96 training views.

mization mechanisms. Future research directions could ex-
plore the extension of our method to dynamic open-world
free-view synthesis, enabling temporal scene modeling.

D. More Visualization Results

We provide additional qualitative results in Fig. 15, 16 and
17 to better illustrate the effectiveness of our method.

i) Reconstruction. As shown in Fig. 15, the results pro-
duced by 3DOVS and Gau-Grouping exhibit significant ar-
tifacts due to the limited radiance field representation qual-
ity when relying solely on sparse-input training data. Al-
though FSGS and CoR-GS introduce additional geometric
constraints to enhance Gaussian radiance fields under sparse
input conditions, they struggle to obtain photo-realistic de-
tails. In contrast, our approach effectively reduces artifacts
and ambiguity, presenting a more robust global structure
with finer details, especially in rendered views distant from
the training viewpoints (e.g. 3rd and 5th rows). These im-
provements can be attributed to our SGI and SPC strategies,
which contribute to an enhanced Gaussian distribution and
enforce effective view-consistency supervision, thereby im-
proving the overall quality of Gaussian representation.

ii) Open-world Segmentation. As shown in Fig. 16,
when using the CLIP model [37] for optimizing Gaussian
semantic attributes, existing methods struggle to achieve
precise object boundaries and maintain object integrity.
Specifically, 3D open-vocabulary segmentation methods,
such as LangSplat and Gau-Grouping, are hindered by the
inferior Gaussian point distributions, which consequently
impede the semantic Gaussian representation and easily
lead to noisy rendered semantic results (e.g. Chair in the
1st row). Notably, LangSplat exhibits more pronounced
noise (1st ∼ 2nd rows) and even inaccurate semantic ren-
derings (3rd ∼ 4th rows) in sparse-input scenarios. This
stems from a key factor: during semantic parameter opti-

mization, LangSplat inherits Gaussian attributes (i.e. posi-
tion, scaling, and rotation) derived from sparse-input scene
reconstruction using the vanilla 3DGS, and only optimizes
the semantic parameter to obtain semantic Gaussian rep-
resentation. By fixing the Gaussian primitives’ attributes,
LangSplat prevents flexible adjustment of semantic repre-
sentations, thereby inheriting the inherent bottlenecks of
sparse-input scene reconstruction and significantly compro-
mising segmentation performance.

Moreover, while sparse-input free-view synthesis meth-
ods, such as DNGaussian and CoR-GS, introduce geomet-
ric constraints to improve Gaussian representation, they still
easily face challenges with semantic ambiguity due to insuf-
ficient semantic consistency supervision.

In contrast, our method delivers robust and accurate
segmentation results, benefiting from the enhanced Gaus-
sian distribution and effective semantic-prompt consistency
supervision. Additional visualizations in Fig. 17 fur-
ther demonstrate that, when optimized with the CLIP-LSeg
model [24], our approach consistently outperforms others
across diverse scenes, underscoring its robustness in 3D
open-vocabulary semantic understanding.

In summary, our approach simultaneously delivers pho-
torealistic rendering quality and superior segmentation per-
formance across diverse scenes. This comprehensive eval-
uation highlights the effectiveness of our approach for
sparse-input open-world free-view synthesis.

E. Per-scene Qualitative Results
In Tables 13 and 14, we present per-scene quantitative
comparisons of reconstruction and segmentation results on
novel views, utilizing CLIP and CLIP-LSeg for optimizing
Gaussian semantic attributes, respectively. Overall, our ap-
proach consistently surpasses other state-of-the-art methods
in terms of reconstruction and segmentation on synthetic
and real-world scenes. These results highlight the effective-
ness of our method in indoor open-world free-view synthe-
sis using sparse-input data.
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Figure 15. Visual reconstruction results on novel views from the ScanNet dataset (1st ∼ 4th Rows) and the Replica dataset (5th ∼ 8th

Rows), using 12 input views for training. Our approach achieves superior global structure and photo-realistic details, attributed to our
enhanced Gaussian representation and effective view-consistency constraints. More detailed analyses refer to Section D.
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Figure 16. Visual open-world segmentation results on novel views from the Replica dataset (1st Row) and the ScanNet dataset (3rd ∼ 4th

Rows) when using the CLIP [37] to optimize Gaussian semantic attributes, with 12 training views. Our method produces more accurate
and complete results thanks to the enhanced Gaussian points distribution and semantic consistency constraints.

3DOVS Feature 3DGS Gau-Grouping CoR-GS OursGround Truth

void box ceiling chair floor indoor plantblinds lamp

sculpture vent wall windowshelf vasetable

Figure 17. Visual open-world segmentation results on novel views from the ScanNet dataset (1st ∼ 3rd Rows) and the Replica dataset
(4th Row) when using the CLIP-LSeg model [24] for optimizing Gaussian semantic attributes, with 12 training views. Our approach
consistently demonstrates superior precision.



Method
Room0 Room1

PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑
3DOVS [31] 16.198 0.554 0.467 5.547 32.699 14.643 0.496 0.674 3.166 18.421

Feature 3DGS [59] 15.991 0.595 0.425 6.402 32.734 17.485 0.674 0.373 5.959 22.927
LangSplat [35] 16.481 0.580 0.407 2.924 20.102 17.116 0.639 0.393 2.167 17.038

Gau-Grouping [50] 15.978 0.599 0.436 10.712 40.774 16.400 0.639 0.410 12.709 46.494
DNGaussian [25] 16.005 0.601 0.492 11.274 42.377 19.353 0.691 0.406 16.883 53.758

FSGS [60] 18.437 0.650 0.365 12.695 44.934 18.516 0.671 0.356 16.065 56.217
CoR-GS [56] 18.813 0.688 0.357 12.747 44.289 19.526 0.725 0.327 16.158 51.927

Ours 20.872 0.704 0.322 16.330 52.486 22.363 0.750 0.264 29.022 74.166

Method
Room2 Office0

PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑
3DOVS [31] 13.536 0.567 0.669 4.633 25.459 14.317 0.485 0.680 2.156 9.580

Feature 3DGS [59] 15.484 0.705 0.384 7.139 29.271 20.719 0.768 0.279 6.430 21.632
LangSplat [35] 18.092 0.740 0.314 4.277 27.811 21.543 0.774 0.277 1.852 11.097

Gau-Grouping [50] 19.359 0.756 0.313 17.657 69.003 20.128 0.738 0.334 11.485 29.045
DNGaussian [25] 20.626 0.767 0.353 17.229 70.091 20.552 0.759 0.362 13.055 32.788

FSGS [60] 18.295 0.740 0.343 15.562 65.899 21.762 0.789 0.262 13.548 31.720
CoR-GS [56] 18.648 0.783 0.303 15.270 64.398 22.056 0.804 0.251 13.020 31.989

Ours 23.267 0.835 0.209 21.112 73.906 23.382 0.821 0.246 16.488 34.438

Method
Office2 Office4

PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑
3DOVS [31] 9.716 0.496 0.760 3.228 18.629 10.789 0.490 0.726 4.748 23.844

Feature 3DGS [59] 16.758 0.752 0.338 8.096 34.719 15.915 0.708 0.352 10.416 39.970
LangSplat [35] 18.237 0.779 0.779 3.802 12.832 14.821 0.694 0.348 4.729 22.844

Gau-Grouping [50] 16.133 0.716 0.381 19.108 67.423 15.784 0.695 0.380 18.500 49.792
DNGaussian [25] 19.100 0.765 0.369 21.779 76.004 15.438 0.686 0.429 19.723 51.380

FSGS [60] 18.261 0.777 0.310 19.737 71.854 16.893 0.724 0.334 18.998 50.224
CoR-GS [56] 17.313 0.781 0.325 18.187 70.760 17.374 0.768 0.309 20.220 51.490

Ours 23.095 0.858 0.204 35.109 87.375 19.087 0.785 0.275 25.697 57.201

Method
scene0004 scene0389

PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑
3DOVS [31] 17.894 0.615 0.496 10.406 51.940 21.550 0.731 0.525 7.919 45.842

Feature 3DGS [59] 16.489 0.600 0.434 8.447 51.692 21.061 0.741 0.383 10.063 46.725
LangSplat [35] 16.656 0.605 0.427 5.499 43.347 23.720 0.791 0.352 4.545 34.339

Gau-Grouping [50] 17.837 0.634 0.424 10.416 54.014 23.241 0.785 0.366 24.414 78.311
DNGaussian [25] 17.810 0.670 0.506 9.460 53.999 20.818 0.739 0.442 20.590 70.258

FSGS [60] 19.011 0.645 0.419 9.934 55.340 24.681 0.796 0.354 21.265 73.597
CoR-GS [56] 18.961 0.662 0.407 10.582 54.445 25.098 0.812 0.338 23.462 75.366

Ours 19.131 0.677 0.404 13.411 64.718 27.232 0.838 0.329 48.243 82.017

Method
scene0494 scene0693

PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑
3DOVS [31] 16.446 0.663 0.577 6.162 31.342 18.996 0.561 0.580 6.516 16.300

Feature 3DGS [59] 14.304 0.649 0.445 5.571 31.384 20.497 0.635 0.436 5.309 22.209
LangSplat [35] 15.235 0.646 0.646 2.409 15.807 19.511 0.610 0.479 0.903 4.469

Gau-Grouping [50] 15.311 0.648 0.447 10.529 46.358 19.633 0.635 0.446 15.330 50.737
DNGaussian [25] 15.820 0.699 0.473 12.564 50.876 19.120 0.656 0.516 13.036 44.122

FSGS [60] 16.511 0.659 0.433 11.857 53.064 22.094 0.682 0.417 13.069 45.399
CoR-GS [56] 16.303 0.706 0.416 11.175 49.935 22.897 0.703 0.410 12.628 43.501

Ours 18.244 0.725 0.386 26.651 67.365 24.998 0.723 0.354 27.472 61.194

Table 13. Quantitative results of reconstruction and segmentation on novel views across various scenes from Replica and ScanNet datasets,
using the CLIP [37] for optimizing Gaussian semantic attributes with 12 training views. Our approach achieves superior performances
in both reconstruction quality and segmentation accuracy.



Method
Room0 Room1

PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑
3DOVS [31] 16.277 0.557 0.464 17.789 62.604 14.717 0.513 0.661 7.771 41.968

Feature 3DGS [59] 16.992 0.599 0.405 14.700 58.249 17.532 0.650 0.373 12.257 57.894
Gau-Grouping [50] 17.548 0.636 0.392 20.618 65.525 18.857 0.681 0.348 16.899 63.053
DNGaussian [25] 17.168 0.633 0.467 19.914 62.975 20.731 0.722 0.378 21.399 68.646

FSGS [60] 19.720 0.696 0.336 21.967 66.214 20.969 0.731 0.303 19.626 67.325
CoR-GS [56] 19.362 0.707 0.351 19.377 61.534 19.603 0.732 0.329 16.332 60.915

Ours 20.944 0.716 0.311 25.740 70.296 22.541 0.761 0.252 23.539 71.692

Method
Room2 Office0

PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑
3DOVS [31] 13.540 0.570 0.660 7.886 44.913 14.580 0.483 0.677 4.347 25.848

Feature 3DGS [59] 18.338 0.742 0.342 16.536 67.860 21.738 0.771 0.285 13.247 56.463
Gau-Grouping [50] 17.910 0.737 0.341 18.196 67.612 20.530 0.751 0.313 16.006 54.395
DNGaussian [25] 20.991 0.784 0.333 24.145 76.987 21.700 0.785 0.352 18.991 59.040

FSGS [60] 20.149 0.781 0.272 24.636 76.413 22.580 0.810 0.252 19.137 59.542
CoR-GS [56] 19.893 0.805 0.265 23.611 74.854 22.715 0.808 0.253 19.845 59.545

Ours 22.879 0.838 0.210 26.995 78.006 23.134 0.819 0.249 23.166 62.666

Method
Office2 Office4

PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑
3DOVS [31] 9.687 0.497 0.753 6.912 40.524 11.157 0.502 0.721 8.448 35.599

Feature 3DGS [59] 18.812 0.788 0.281 20.073 79.211 15.513 0.701 0.346 21.328 70.054
Gau-Grouping [50] 17.130 0.756 0.323 26.287 78.060 14.748 0.692 0.384 23.505 70.468
DNGaussian [25] 21.082 0.822 0.311 27.715 81.715 18.115 0.748 0.381 29.989 74.869

FSGS [60] 20.486 0.817 0.251 27.564 82.127 18.324 0.772 0.294 29.397 75.789
CoR-GS [56] 20.354 0.830 0.255 26.757 82.480 18.467 0.792 0.286 29.053 74.079

Ours 23.413 0.868 0.200 39.293 88.195 19.825 0.798 0.266 36.304 82.039

Method
scene0004 scene0389

PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑
3DOVS [31] 17.829 0.616 0.498 23.079 75.464 21.882 0.739 0.515 24.401 81.412

Feature 3DGS [59] 18.038 0.618 0.406 16.215 77.017 24.682 0.806 0.337 31.594 89.220
Gau-Grouping [50] 17.975 0.631 0.411 28.301 74.673 22.931 0.779 0.365 43.316 83.081
DNGaussian [25] 17.853 0.636 0.487 25.833 73.883 25.363 0.819 0.374 39.106 89.642

FSGS [60] 19.399 0.672 0.411 28.743 78.000 26.784 0.844 0.328 39.576 89.337
CoR-GS [56] 19.331 0.673 0.412 29.863 79.074 26.573 0.828 0.333 37.277 89.190

Ours 19.631 0.681 0.403 40.120 84.554 27.512 0.847 0.320 63.541 89.646

Method
scene0494 scene0693

PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ mAcc ↑
3DOVS [31] 16.703 0.676 0.560 26.038 75.165 18.930 0.577 0.566 22.487 59.412

Feature 3DGS [59] 15.448 0.659 0.426 17.940 67.083 20.641 0.629 0.443 18.461 57.569
Gau-Grouping [50] 15.594 0.670 0.428 34.902 67.838 20.255 0.649 0.471 27.678 68.902
DNGaussian [25] 15.240 0.664 0.475 32.891 67.215 22.469 0.704 0.468 30.657 68.838

FSGS [60] 17.058 0.691 0.413 37.701 74.877 24.257 0.713 0.391 32.422 69.146
CoR-GS [56] 17.386 0.716 0.406 38.263 75.702 23.913 0.724 0.399 31.276 67.810

Ours 19.711 0.756 0.355 52.016 81.288 25.315 0.737 0.357 45.407 78.849

Table 14. Quantitative results of reconstruction and segmentation on novel views across various scenes from Replica and ScanNet datasets,
using CLIP-LSeg [24] for optimizing Gaussian semantic attributes with 12 training views. Our approach achieves superior performances
in both reconstruction quality and segmentation accuracy.
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